Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure

赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用

基本信息

项目摘要

The failure of hemodialysis arteriovenous (A-V) fistulas, which are surgically created by anastomosing a vein to a nearby artery, remains an unmet medical problem in the field of vascular surgery. In fact, approximately four out of 10 newly created fistulas will require a surgical or intravascular salvage procedure to reach maturation and become suitable for hemodialysis. Arteriovenous fistulas fail because stenosis (vascular narrowing) prevents high blood flows through the venous limb and increases the risk for thrombosis. We recently discovered that stenosis occurs due to excessive medial fibrosis and increased extracellular protein crosslinking, and is aggravated by intimal hyperplasia (IH) in a human cohort of 165 patients. Therefore, our overall goals are, first, to establish the cause-and-effect relationship between LOX, the most important enzyme responsible for crosslinking, and A-V fistula failure and, second, to design new therapeutics to facilitate A-V fistula maturation through perivascular delivery of LOX inhibitors. Our proposal is built on strong scientific premises (manuscripts and unique preliminary data) that suggest a mechanistic relationship between postoperative upregulation of LOX in native fistulas and the improper wall remodeling that causes fistula failure. Specifically, our overarching hypothesis is that LOX activity is a major contributor in A-V fistula maturation failure. Our primary hypothesis is that postsurgical upregulation of nuclear LOX deaminates lysine residues in histones to disrupt the epigenetic landscape that secures contractile gene expression in SMCs, thereby facilitating their maladaptive phenotypic switch, neointima formation, and fibrosis of newly created A-V fistulas. Our secondary hypothesis is that inhibition of LOX prevents inward remodeling in a preclinical A-V fistula model in swine. We will test our hypothesis in three specific aims that will: 1) identify the cellular source of LOX after A-V fistula creation, 2) demonstrate the impact of LOX mediated histone modifications on the SMC phenotype after fistula creation, and 3) demonstrate that LOX inhibitors attenuate inward remodeling, IH, and stenosis in preclinical A-V fistulas in swine. We will use fine microsurgical techniques in novel conditional knockout mice and in vitro and in situ models to successfully achieve our goals. We will also use a preclinical model in swine to demonstrate the efficacy and safety of perivascular delivery of LOX inhibitors in preventing A-V fistula failure. In conclusion, with the successful accomplishment of this proposal, we are paving the way for the design of new drugs and cell type-specific interventions to effectively target A-V fistula fibrosis and reduce vascular access complications.
血液透析动静脉(A-V)瘘的失败 在血管领域,静脉与附近动脉的吻合仍然是一个尚未解决的医学问题。 做手术。事实上,大约十分之四的新形成的瘘管需要手术或 血管内挽救程序达到成熟,适合血液透析。 动静脉瘘失败是因为狭窄(血管狭窄)阻止了高血 流经静脉肢体,增加血栓形成的风险。我们最近 发现狭窄的发生是由于过度的中层纤维化和增加 细胞外蛋白交联,并因人的内膜增生(IH)而加重 165名患者组成的队列。因此,我们的总体目标是,第一,建立 最重要的酶--脂氧合酶之间的因果关系 其二,设计新的治疗方法以促进动静脉瘘。 通过血管周围注射LOX抑制剂使瘘管成熟。我们的建议建立在强有力的基础上 科学前提(手稿和独一无二的初步数据) 自然瘘术后LOX上调与手术不当的关系 导致瘘管衰竭的室壁重塑。具体地说,我们的首要假设是 LOX活性是动静脉瘘成熟失败的主要原因。我们的主要假设 手术后核LOX的上调会使组蛋白中的赖氨酸残基去氨基,从而破坏 确保SMC收缩基因表达的表观遗传格局,从而促进 他们的不适应表型转换、新生内膜形成和新生的房室纤维化 瘘管。我们的第二个假设是抑制LOX可以防止内向重塑 在猪的临床前动静脉瘘模型中。我们将在三年内检验我们的假设 具体目标将:1)在动静脉瘘形成后确定LOX的细胞来源,2) 脂氧合酶介导组蛋白修饰对瘘管后SMC表型的影响 创作,以及 3)证明LOX抑制剂可减轻临床前房室传导阻滞的内向重构、间歇性高血压和狭窄 猪的瘘管。我们将在新的条件下使用精细的显微外科技术 基因敲除小鼠和体外和原位模型成功实现了我们的目标。我们 还将在猪身上使用临床前模型来证明这种药物的有效性和安全性 血管周围注射LOX抑制剂预防动静脉瘘失败。总之,有了 这一提议的成功完成,我们正在为设计新药和 针对细胞类型的干预有效靶向动静脉瘘纤维化和减少血管 进入并发症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAN-TING E. SHIU其他文献

YAN-TING E. SHIU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAN-TING E. SHIU', 18)}}的其他基金

Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    9913910
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    10432141
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    10507700
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    10432703
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    10190926
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    10019524
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Dual Role of Lysyl Oxidase in Arteriovenous Fistula Failure
赖氨酰氧化酶在动静脉内瘘衰竭中的双重作用
  • 批准号:
    10605271
  • 财政年份:
    2019
  • 资助金额:
    $ 7.98万
  • 项目类别:
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    10614369
  • 财政年份:
    2018
  • 资助金额:
    $ 7.98万
  • 项目类别:
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    10047699
  • 财政年份:
    2018
  • 资助金额:
    $ 7.98万
  • 项目类别:
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    10292935
  • 财政年份:
    2018
  • 资助金额:
    $ 7.98万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 7.98万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
  • 批准号:
    23KK0126
  • 财政年份:
    2023
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.98万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了