Mechanisms of PCP signaling in axon guidance and cochlear innervation
PCP信号在轴突引导和耳蜗神经支配中的机制
基本信息
- 批准号:10207584
- 负责人:
- 金额:$ 51.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic TraumaAcousticsAffectAuditoryAxonBinding SitesCell membraneCellsChIP-seqCharacteristicsChemicalsCochleaComplexCuesDataDefectDevelopmentDevelopmental ProcessDominant-Negative MutationEnsureEph Family ReceptorsEphrin-A3EphrinsEpithelialEventGene DeletionGeneticGenetic TranscriptionGoalsGrowth ConesHair CellsImageInner Hair CellsKnock-outKnowledgeLabelLaboratoriesLigandsMembraneMinorityMusNatural regenerationNeuronsNociceptionNociceptorsNoiseOrgan of CortiOuter Hair CellsPathologyPathway interactionsPatternPeripheralPhenotypeProteinsReportingResearchResearch DesignSensorySensory HairSignal PathwaySignal TransductionSiteSupporting CellSupporting Cell of Organ of CortiSynapsesTestingTherapeuticTimeTransgenesaxon guidancebasecell injurycell motilitycell typeconditional knockoutconditional mutantdeafdeafnessexperimental studymutantnerve supplyneurodevelopmentneuron developmentplanar cell polaritypreservationpromoterreceptorrepairedsoundspiral gangliontranscription factortranscriptome sequencing
项目摘要
Project Summary
The cochlea is innervated by spiral ganglion neurons, which relay sound information from sensory hair cells to
central auditory targets. Deafness due to acoustic trauma is associated with pathologies in both spiral ganglion
neurons and the hair cells which they innervate, and an important aspect of repairing the deafened cochlea is
coaxing spiral ganglion neurons to re-innervate their hair cell partners. It is generally anticipated that hair cell re-
innervation will require the reactivation of developmental mechanisms. Therefore, understanding early
developmental events is an important prerequisite for regeneration-based therapeutic strategies.
A subset of spiral ganglion neurons has nociceptive characteristics and are thus equipped to detect acoustic
trauma, which may be important for preserving function. These are the type II spiral ganglion neurons, which
constitute a minority of cochlear afferents but innervate all outer hair cells. The development of type II neurons
is unique and facilitates outer hair cell innervation because their peripheral axons project beyond the inner hair
cells. An important component of cochlear innervation is how the type II spiral ganglion neurons subsequently
make a distinct 90° turn towards the cochlear base to synapse with multiple outer hair cells. While many aspects
of outer hair cell innervation are unknown, our laboratories have found that two signaling pathways, planar cell
polarity (PCP) signaling and Eph/Ephrin signaling, are required for the 90° turn that directs the peripheral axon
towards the cochlear base. A similar phenotype occurs with loss of the transcription factor Prox1 suggesting that
a regulatory hierarchy controls cochlear innervation.
The goal of this research is to establish the relationship between these two signaling pathways by examining
each in detail and relative to each other. This includes experiments in Aim 1 to distinguish between alternative
mechanisms in which PCP proteins pattern the organ of Corti prior to innervation or signal directly to the growth
cone. Since the Ephrin receptor EphA7 is also required for axon turning, in Aim 2 we will determine if these
pathways are linearly organized or if they are parallel and redundant signals with each promoting turning.
Remarkably the EphA7 promoter contains putative Prox1 binding sites suggesting that these guidance
mechanisms may be transcriptionally regulated. This hypothesis will be tested further in Aim 3. While these
experiments are focused on developmental processes, we anticipate that these are events which must be
reenacted during hair cell re-innervation and repair, and therefore the proposed research will advance therapies
for repairing the deafened cochlea.
项目摘要
耳蜗由螺旋神经节神经元支配,该神经元将声音信息从感觉毛细胞传递到
中央听觉目标。由于声学创伤引起的耳聋与两种螺旋神经节的病理有关
神经元及其支配的毛细胞以及修复破坏的耳蜗的重要方面是
哄骗螺旋神经元神经元重新启动其毛细胞伴侣。人们普遍认为,毛细胞会重新
神经需要重新激活发育机制。因此,尽早理解
发展事件是基于再生治疗策略的重要先决条件。
螺旋神经神经元的一部分具有伤害性特征,因此等效于检测声学
创伤,这对于保存功能可能很重要。这些是II型螺旋神经神经元,
构成了少数人工耳蜗的传入,但支配了所有外毛细胞。 II型神经元的发展
是独一无二的,促进了外部毛孔神经支配
细胞。人工耳蜗神经的重要组成部分是II型螺旋神经神经元如何随后如何
使90°转向人工耳蜗,以与多个外毛细胞突触。而许多方面
外毛细胞神经支配的神经未知,我们的实验室发现两个信号通路,平面电池
极性(PCP)信号传导和EPH/EPHRIN信号传导是指向周围轴突的90°转弯所必需的
朝向人工耳蜗。丢失转录因子Prox1也会发生类似的表型,这表明
监管层次结构控制着人工耳蜗神经。
这项研究的目的是通过检查这两个信号途径之间的关系
彼此详细介绍。这包括AIM 1中的实验以区分替代方案
PCP蛋白在神经支配之前或直接发信号的PCP蛋白质的机制
由于轴突转动也需要晶状体蛋白受体epha7,因此在AIM 2中,我们将确定这些是否是否
途径是线性组织的,或者如果它们是平行的,并且冗余信号与每个促进转动。
值得注意的是,epha7启动子包含假定的Prox1结合位点,表明这些指导
机制可能会受到转录调节。该假设将在AIM 3中进一步检验。
实验专注于发展过程,我们预计这些事件必须是
在毛细胞重新发作和修复过程中重新成熟,因此拟议的研究将进取疗法
用于修理被破坏的耳蜗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL R DEANS其他文献
MICHAEL R DEANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL R DEANS', 18)}}的其他基金
Mechanisms of PCP signaling in axon guidance and cochlear innervation
PCP信号在轴突引导和耳蜗神经支配中的机制
- 批准号:
10430177 - 财政年份:2020
- 资助金额:
$ 51.01万 - 项目类别:
Mechanisms of PCP signaling in axon guidance and cochlear innervation
PCP信号在轴突引导和耳蜗神经支配中的机制
- 批准号:
10667459 - 财政年份:2020
- 资助金额:
$ 51.01万 - 项目类别:
Genetic Dissection of Vangl2-Dependent Axon Guidance in the Developing Cochlea
发育中耳蜗中 Vangl2 依赖的轴突引导的遗传解剖
- 批准号:
9385989 - 财政年份:2017
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
8478966 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
8819439 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
8768685 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
10307536 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
10531238 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
8641337 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
Planar Polarity Mechanisms in Mammalian Inner Ear Development
哺乳动物内耳发育中的平面极性机制
- 批准号:
10063822 - 财政年份:2013
- 资助金额:
$ 51.01万 - 项目类别:
相似国自然基金
水翼前缘空化对流场声学压力特性影响研究
- 批准号:52309117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热力学平衡态气相粘度测量中声学共振能量耗散机理及影响规律研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
热力学平衡态气相粘度测量中声学共振能量耗散机理及影响规律研究
- 批准号:52276169
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
不同声学响应支架对缺血组织血管生成影响的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同声学响应支架对缺血组织血管生成影响的机制研究
- 批准号:82102075
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 51.01万 - 项目类别:
Continuous Photoacoustic Monitoring of Neonatal Stroke in Intensive Care Unit
重症监护病房新生儿中风的连续光声监测
- 批准号:
10548689 - 财政年份:2022
- 资助金额:
$ 51.01万 - 项目类别:
Hormonal and acoustic regulation of the dopaminergic auditory efferent system: improving detection of social acoustic signals at the level of the inner ear
多巴胺能听觉传出系统的激素和声学调节:改善内耳水平的社会声学信号的检测
- 批准号:
10439364 - 财政年份:2022
- 资助金额:
$ 51.01万 - 项目类别:
Application of mild therapeutic hypothermia for hearing conservation during cochlear implant surgeries
亚低温治疗在人工耳蜗植入手术中听力保护中的应用
- 批准号:
10327695 - 财政年份:2021
- 资助金额:
$ 51.01万 - 项目类别:
Real-Time Monitoring and Scavenging of Reactive Oxygen Species (ROS) to Enhance Cochlear Implantation Outcomes
实时监测和清除活性氧 (ROS) 以提高人工耳蜗植入效果
- 批准号:
10515333 - 财政年份:2021
- 资助金额:
$ 51.01万 - 项目类别: