Mechanisms of Cu-binding factors to promote myogenic gene expression
铜结合因子促进生肌基因表达的机制
基本信息
- 批准号:10209843
- 负责人:
- 金额:$ 36.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAtaxiaBindingBinding SitesBiochemicalBiochemical ReactionBiologyCardiacCategoriesCell Differentiation processCell LineageCell NucleusCell ProliferationCell physiologyCellsCellular StressChIP-seqChromatinChromatin StructureCoenzymesComplexCopperCoupledCulture MediaDataDevelopmentDevelopmental ProcessDifferentiation AntigensDiseaseDystoniaEnzymesExcretory functionFailureFamilyGene ActivationGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomic DNAGrowthGrowth and Development functionHealthHepatolenticular DegenerationHomeostasisHumanHydroxyl RadicalHypertrophic CardiomyopathyImmunoprecipitationImpairmentIonsKnock-outKnowledgeLifeLocationMass Spectrum AnalysisMenkes Kinky Hair SyndromeMetabolismMetalsMitochondriaModelingModificationMolecularMolecular ChaperonesMusMuscleMuscle DevelopmentMuscle hypotoniaMutationMyoblastsMyogeninMyopathyNeurologicNeutropeniaOrganPathologicPathologyPatientsPeptide Sequence DeterminationPeripheral Nervous System DiseasesPhenotypePlayProliferation MarkerPropertyProteinsRegulationRoleSkeletal MuscleStudy modelsTechniquesTestingTimeTissue DifferentiationTissue-Specific Gene ExpressionTissuesTrace ElementsTrace metalTranscriptional RegulationWestern Blottingabsorptionchromatin remodelingexpectationexperimental studygenomic locusin vivoiron absorptionknock-downmouse modelmyogenesisnovelpreventprogramspromoterrecruitsatellite cellskeletal muscle differentiationtranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY
Cell development and differentiation require lineage specific mechanisms by which cells initiate programs
of gene expression. In normal conditions, lineage determination involves activation of genes that are
transcriptionally silent by specific transcription factors, chromatin remodelers, coactivators, and other lineage
specific molecules. Skeletal muscle differentiation is an excellent model for studying fundamental principles of
tissue-specific gene expression and differentiation as there is a significant understanding of mechanisms
controlling myogenic-specific gene expression. However, emerging evidence shows a novel category of
Copper (Cu)-binding factors that may have a previously unappreciated direct impact in the regulation of
myoblast proliferation and differentiation.
Cu is an essential trace metal that serves as a catalytic co-factor for a wide variety of enzymatic reactions
that play critical roles in life. Cu deficiency and overload leads to pathophysiological conditions including
Menkes and Wilson’s diseases, neutropenia, impaired iron absorption, peripheral neuropathy, mitochondrial
deficiencies and hypertrophic cardiomyopathy. Therefore, the mechanisms for Cu distribution and usage in
different tissues and organs, as well as the consequences due to dysregulated Cu acquisition, are important to
human health. Limited information is available regarding Cu and Cu-binding factors and their mechanisms of
action in myogenesis and most developmental processes. We propose to elucidate novel mechanisms of gene
regulation that drive muscle differentiation and development and that are dependent on copper and Cu-binding
transcription factors. We propose integrative studies that combine diverse molecular, biochemical and
spectroscopic techniques to characterize novel molecular mechanisms by which Cu-binding factors regulate
myogenic differentiation. We propose a novel model where Cu controls myogenesis by activating Cu-TFs that
may act synchronously, either by acting on different promoters at the same time or by acting sequentially at
different stages of differentiation, or both. Our experiments will identify new components and mechanisms for
mammalian Cu-binding factors in the regulation of lineage-specific gene expression. Our studies also will
establish a basis for understanding muscular diseases related to aberrant Cu biology using well-characterized
mouse models for Menkes and Wilson’s diseases. Understanding the molecular mechanisms that drive lineage
specific gene expression dependent on Cu will greatly advance our knowledge of several Cu-related diseases.
项目摘要
细胞发育和分化需要谱系特异性机制,细胞通过这些机制启动程序
的基因表达。在正常情况下,谱系决定涉及基因的激活,
转录沉默的特定转录因子,染色质重塑,共激活因子和其他谱系,
特定分子骨骼肌分化是研究骨骼肌分化的基本原理的极好模型。
组织特异性基因表达和分化,因为对机制有重要的了解
控制成肌特异性基因表达。然而,新出现的证据显示,
铜(Cu)结合因子,可能有一个以前未认识到的直接影响,在调节
成肌细胞增殖和分化。
铜是一种必需的微量金属,作为多种酶促反应的催化辅因子
在生命中扮演着重要角色。铜缺乏和超负荷导致病理生理条件,包括
Menkes和Wilson病,中性粒细胞减少症,铁吸收受损,周围神经病变,线粒体
和肥厚型心肌病。因此,铜在土壤中的分布和利用机制可能与土壤中铜的分布和利用有关。
不同的组织和器官,以及由于铜的获取失调的后果,是重要的,
人体健康有限的信息是关于铜和铜结合因子及其机制,
在肌生成和大多数发育过程中起作用。我们建议阐明新的机制,基因
调节驱动肌肉分化和发育,并依赖于铜和铜结合
转录因子我们建议综合研究,将联合收割机不同的分子,生物化学和
光谱技术来表征铜结合因子调节的新分子机制
肌源性分化我们提出了一种新的模型,其中Cu通过激活Cu-TF来控制肌生成,
可以通过同时作用于不同的启动子或通过依次作用于不同的启动子来同步作用。
不同的分化阶段,或两者。我们的实验将确定新的成分和机制,
哺乳动物铜结合因子在谱系特异性基因表达的调节。我们的研究也将
建立一个基础,了解肌肉疾病有关的异常铜生物学使用良好的表征,
Menkes和Wilson病的小鼠模型。了解驱动谱系的分子机制
依赖于铜的特异性基因表达将极大地推进我们对几种铜相关疾病的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Teresita Del Nino Jesus Padilla-Benavides其他文献
Teresita Del Nino Jesus Padilla-Benavides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Teresita Del Nino Jesus Padilla-Benavides', 18)}}的其他基金
Mechanisms of Cu-binding factors to promote myogenic gene expression
铜结合因子促进生肌基因表达的机制
- 批准号:
10618921 - 财政年份:2021
- 资助金额:
$ 36.15万 - 项目类别:
Mechanisms of Cu-binding factors to promote myogenic gene expression
铜结合因子促进生肌基因表达的机制
- 批准号:
10456324 - 财政年份:2021
- 资助金额:
$ 36.15万 - 项目类别:
相似海外基金
How exercise improves ataxia in SCA6
运动如何改善 SCA6 的共济失调
- 批准号:
479005 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Operating Grants
Exploratoin of Nrf2 activators that potentiate chaperone-mediated autophagy and are useful for the treatment of spinocrebellar ataxia
探索增强伴侣介导的自噬并可用于治疗脊髓小脑共济失调的 Nrf2 激活剂
- 批准号:
23K06161 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the role of Tox3 in congenital cerebellar hypoplasia and ataxia
定义 Tox3 在先天性小脑发育不全和共济失调中的作用
- 批准号:
10799992 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Genome-wide dysregulation of R-loops in Ataxia Telangiectasia neurological pathogenesis
共济失调毛细血管扩张症神经发病机制中 R 环的全基因组失调
- 批准号:
10607414 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Identifying the molecular mechanisms of GEMIN5 mutations in a novel cerebellar ataxia syndrome
鉴定新型小脑共济失调综合征中 GEMIN5 突变的分子机制
- 批准号:
10753403 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Molecular Pathogenesis of spinocerebellar ataxia type 12
12 型脊髓小脑共济失调的分子发病机制
- 批准号:
10579736 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
The Impact of Vitamin D on mTOR Signaling, Seizures, and Motor Behavior in a Mouse Model of Hyperactive mTOR Induced Epilepsy and Ataxia
维生素 D 对 mTOR 过度活跃诱发癫痫和共济失调小鼠模型中 mTOR 信号传导、癫痫发作和运动行为的影响
- 批准号:
10754319 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Pathological Mechanisms of Immune-Mediated Cerebellar Ataxia with Associated Sez6L2 Autoantibodies
免疫介导的小脑共济失调与相关 Sez6L2 自身抗体的病理机制
- 批准号:
10740682 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:














{{item.name}}会员




