Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
基本信息
- 批准号:10210359
- 负责人:
- 金额:$ 63.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAutomobile DrivingBiologicalBiological AssayBiological ProcessBiologyCandidate Disease GeneCell LineageCell SeparationCellsCharacteristicsCicatrixClinicalCoculture TechniquesComplexDataData SetDermalDermisDestinationsDiseaseEmbryonic DevelopmentEpidermisEpithelialEventFibroblastsFutureGene Expression ProfileGenesGrainHairHair follicle structureHealthcareHeterogeneityHumanHybridsImmuneIndividualInjuryKnowledgeLightMammalsMedicineMemoryMethodologyModelingMolecularMolecular ProfilingMusNatural regenerationPathway interactionsPhysiologicalPropertyProtocols documentationRegenerative MedicineRegenerative researchRegulator GenesRegulatory PathwayResearchResolutionRoleSignal TransductionSkinSolid NeoplasmSpecificitySystemTestingTimeTissue EngineeringTissue MicroarrayTissuesUnited StatesWorkWound modelsXenograft Modelbasecancer therapycell typecomputerized toolsdensityepithelial stem cellexperimental studyhealingimprovedin vivoin vivo imaginginjury and repairinsightinterdisciplinary collaborationloss of functionmigrationmouse modelmulti-scale modelingnetwork modelsnovelpredictive modelingreconstitutionrecruitregeneration potentialregenerativeregenerative therapyrestorationsimulationsingle cell analysissingle-cell RNA sequencingskin regenerationskin woundskin xenograftspatiotemporalstemstem cellstissue regenerationtranscriptional reprogrammingtranscriptomicstumorigenesiswoundwound epidermiswound healing
项目摘要
PROJECT SUMMARY
In regenerative medicine, it is critically important to understand the complex mechanisms that rewrite and
stably maintain cellular memory in order to reprogram cells to the new, desired destination fates. Wound
healing, involving critical biological processes at multiple spatial and temporal scales, provides an ideal system
for studying regenerative mechanisms. In skin, several distinct pools of epithelial stem cells, such as those in
the interfollicular epidermis and different parts of the hair follicle, become activated and recruited to repair the
wound. Importantly, large skin wounds can regenerate the normal array of tissue constituents, specifically new
hairs, while small wounds never can. We hypothesize that regeneration is an emerging property arising from
the optimal interplay between many biological events at multiple temporal and spatial scales including, but not
limited to, transcriptional reprogramming of migrating epidermal, dermal and immune cells, as well as signaling
crosstalk between these cells and their surrounding microenvironment.. Here, we propose a novel multiscale
framework integrating multiple physiological systems (e.g. epidermal, dermal, and immune cells and hair
follicles) to identify critical conditions for shifting injury repair toward regeneration and away from scarring. The
proposed methodology addresses cutting-edge multiscale challenges in analyzing single-cell molecular data
and their connections with spatial dynamics in tissues. We will carry out three aims. In Aim 1, we will identify
regeneration-specific gene profile changes in epidermal, dermal, and immune cell in healing wounds; in Aim 2,
we will develop an integrative multiscale model to predict the relative roles and emergent dynamics of multiple
interacting cell types during wound healing; and in Aim 3, we will test model predictions using in-vivo murine
functional assays and ex vivo human co-culture; in combination with multiscale simulations and statistical
inference, we will thus be able to dissect the regenerative roles and spatial dynamics of candidate regulators.
The knowledge gained in this proposed work will help to develop future protocols for augmenting the
regeneration mechanisms in clinical settings to achieve robust human skin regeneration after any injury (small
or large) and with high efficiency (i.e. always achieve high density of regenerating hairs). The overall insights
learned will not only shed new light into skin research, but also establish a founding paradigm for other
epithelial systems. The novel computational tools for single-cell RNA-seq-driven cell lineage tracking, the
robust multiscale models for spatial dynamics of multiple cell lineages, and the overall integrative multiscale
framework of tissue regeneration will have broad applications, including for embryonic development, solid
tumors, and many other epithelial and even non-epithelial tissues. Given the importance of stem/progenitor
cells in regeneration and tumorigenesis, these studies will also have important implications for tissue
engineering and cancer treatment.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xing Dai其他文献
Xing Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xing Dai', 18)}}的其他基金
Intrinsic and extrinsic control of epithelial tissue stem cell activity
上皮组织干细胞活性的内在和外在控制
- 批准号:
10406792 - 财政年份:2022
- 资助金额:
$ 63.66万 - 项目类别:
Intrinsic and extrinsic control of epithelial tissue stem cell activity
上皮组织干细胞活性的内在和外在控制
- 批准号:
10615883 - 财政年份:2022
- 资助金额:
$ 63.66万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10289695 - 财政年份:2021
- 资助金额:
$ 63.66万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10438606 - 财政年份:2018
- 资助金额:
$ 63.66万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10436537 - 财政年份:2018
- 资助金额:
$ 63.66万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10654206 - 财政年份:2018
- 资助金额:
$ 63.66万 - 项目类别:
Mammary basal/stem cell plasticity and regulation
乳腺基底/干细胞可塑性和调节
- 批准号:
9557556 - 财政年份:2017
- 资助金额:
$ 63.66万 - 项目类别:
Mammary basal/stem cell plasticity and regulation
乳腺基底/干细胞可塑性和调节
- 批准号:
9895082 - 财政年份:2017
- 资助金额:
$ 63.66万 - 项目类别:
Control of epithelial plasticity and differentiation in hair follicle stem/progenitor cells
毛囊干/祖细胞上皮可塑性和分化的控制
- 批准号:
9293894 - 财政年份:2015
- 资助金额:
$ 63.66万 - 项目类别:
Chromatin Regulation of Epithelial Progenitor Cell Self-Renewal by Pygo2
Pygo2 对上皮祖细胞自我更新的染色质调节
- 批准号:
7895610 - 财政年份:2009
- 资助金额:
$ 63.66万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 63.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 63.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 63.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 63.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




