Sleep Health Profiles Predicting Impaired Cognition and Depressive Symptoms in Older Adults: Extending Novel Statistical Methods in Multi-Cohort Applications
睡眠健康状况预测老年人认知受损和抑郁症状:在多队列应用中扩展新颖的统计方法
基本信息
- 批准号:10209375
- 负责人:
- 金额:$ 196.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAutomobile DrivingBehavioralBiometryCharacteristicsClinicalCognitionCognitiveCohort StudiesComplexCost efficiencyDataData AnalysesDementiaDepositionDiagnosisDimensionsDiseaseDrowsinessElderlyEthicsEuropeanFunctional disorderFundingFutureGuide preventionHealthHealth behaviorImpaired cognitionIndividualInternetInterventionIntervention StudiesInvestigationMachine LearningMajor Depressive DisorderMeasuresMediationMedical RecordsMemoryMental DepressionMethodologyMethodsMinorityMorbidity - disease rateMulti-Ethnic Study of AtherosclerosisOutcomeOutcome MeasureParticipantPathway interactionsPatient Self-ReportProspective StudiesPublic HealthRaceResourcesRestRisk FactorsSamplingSampling StudiesSex DifferencesSleepSleep DisordersStatistical MethodsTechniquesTestingTimeVisitWorkactigraphybasecognitive functioncohortdata harmonizationdepressive symptomsdesigndisabilityethnic diversityflexibilityhigh dimensionalityhuman old age (65+)improvedindexingmachine learning methodmenmodifiable riskmortalitynovelosteoporosis with pathological fracturepreventracial and ethnicrandom forestresearch studysatisfactionsecondary analysissexsleep healthsleep-focused interventionssociodemographic factorssuccess
项目摘要
PROJECT SUMMARY / ABSTRACT
Depression has an enormous impact: it is the leading cause of disability worldwide and affects more than 264
million people of all ages. Moreover, major depression at any age doubles the risk of Alzheimer’s Disease and
related dementias, which affect over 50 million people worldwide — a number projected to triple by 2050.
Interventions for depression in older adults have limited efficacy to date, and directly treating cognitive
impairment and/or Alzheimer’s Disease is not feasible or effective. Thus, identifying modifiable risk factors that
favorably influence both depression and cognition before dementia onset is an urgent public health need. Sleep
is one such risk factor. However, sleep is not a uni-dimensional construct represented by merely its duration or
the presence/absence of a sleep disorder. Rather sleep is multidimensional: it is comprised of multiple domains
(e.g., Regularity, Satisfaction, Sleepiness, Timing, Efficiency, Duration) and measured on multiple levels (e.g.
self-report or behavioral [via actigraphy]). In our initial R01, we leveraged our biostatistical and sleep expertise
to develop and hone methods for examining multidimensional sleep health as a predictor of mortality in a high-
dimensional machine learning (ML) context that flexibly accounts for the complex interactions that exist among
sleep and non-sleep risk factors. We now seek to build on the success of the initial funding period by using our
novel methods to examine multidimensional sleep health as a predictor of changes in cognition and depressive
symptoms. To enhance generalizability and power, we are developing a Pooled Sample of N~3,400 adults aged
≥65 without cognitive impairment from the Osteoporotic Fractures in Men Study, Study of Osteoporotic Fractures,
Memory and Aging Project (MAP) and Minority Aging Research Study (MARS). With these methods and data,
we will examine multidimensional sleep health for predicting changes in global cognition and incident dementia
(Aim 1) and depressive symptoms (Aim 2) in a high-dimensional machine learning context. We will also examine
depression as a pathway through which multidimensional sleep health predicts impaired cognition (Aim 3). Our
Secondary Aims are to: (a) apply parallel methods in two additional cohorts (the Rotterdam Study and Multi-
Ethnic Study of Atherosclerosis) to replicate and extend our findings to cohorts with different demographic
profiles and clinical Alzheimer’s Disease and related dementias diagnoses; (b) examine effects by sex and race;
and (c) identify the sleep health characteristics driving overall effects. Identifying multidimensional sleep health
profiles that reliably predict changes in global cognition, incident dementia, and changes in depressive symptoms
in a realistic, high dimensional context will directly inform the design of novel targeted interventions and
prospective studies focused on preventing Alzheimer’s Disease and related dementias. Moreover, we will amplify
the impact of our work by demonstrating new methods for studying health and depositing harmonized data on
the National Sleep Research Resource to facilitate future multi-cohort secondary analyses.
项目摘要/摘要
抑郁症有巨大的影响:它是全球残疾的主要原因,影响着超过264人
上百万各个年龄段的人。此外,任何年龄段的重度抑郁症都会使患阿尔茨海默病的风险增加一倍,
影响全球5000多万人的相关痴呆症--预计到2050年,这一数字将增加两倍。
到目前为止,对老年人抑郁症的干预效果有限,直接治疗认知能力
损害和/或阿尔茨海默氏症是不可行或有效的。因此,确定可修改的风险因素
在痴呆症发作前对抑郁和认知产生积极影响是一项紧迫的公共卫生需求。沉睡
就是这样的风险因素之一。然而,睡眠并不是仅仅由睡眠的持续时间或时间来表示的一维结构
睡眠障碍的存在/不存在。相反,睡眠是多维的:它由多个领域组成
(例如,规律性、满足感、困倦、时间、效率、持续时间),并在多个水平上测量(例如
自我报告或行为[通过活动记录])。在我们最初的R01中,我们利用了我们的生物统计学和睡眠专业知识
开发和磨练检查多维睡眠健康作为高死亡率预测因子的方法。
维度机器学习(ML)上下文,灵活地解决存在于
睡眠和非睡眠风险因素。我们现在寻求在最初资助期的成功基础上,利用我们的
检查多维睡眠健康作为认知改变和抑郁的预测因子的新方法
症状。为了增强普适性和能力,我们正在开发一个N~3,400岁成年人的混合样本
≥65男性骨质疏松性骨折无认知损害研究,骨质疏松性骨折研究,
记忆与老龄化项目(MAP)和少数民族老龄化研究(MARS)。有了这些方法和数据,
我们将检查多维睡眠健康以预测全球认知和痴呆症事件的变化
(目标1)和抑郁症状(目标2)在高维机器学习环境中。我们还将检查
抑郁作为多维睡眠健康预测认知受损的途径(目标3)。我们的
次要目标是:(A)在另外两个群体中应用平行方法(鹿特丹研究和多学科研究)。
动脉粥样硬化的种族研究)将我们的发现复制并扩展到不同人口统计学的队列
阿尔茨海默病和相关痴呆症的概况和临床诊断;(B)按性别和种族检查影响;
以及(C)确定影响整体效果的睡眠健康特征。识别多维睡眠健康
可靠地预测整体认知、偶发痴呆症和抑郁症状变化的概况
在现实、高维度的背景下,将直接为设计新的有针对性的干预措施和
前瞻性研究的重点是预防阿尔茨海默病和相关的痴呆症。此外,我们还将扩大
我们的工作通过展示研究健康的新方法和将协调一致的数据存放在
国家睡眠研究资源,以促进未来多队列二次分析。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The multidimensionality of sleep in population-based samples: a narrative review.
- DOI:10.1111/jsr.13608
- 发表时间:2022-08
- 期刊:
- 影响因子:4.4
- 作者:van de Langenberg, Sterre C. N.;Kocevska, Desana;Luik, Annemarie I.
- 通讯作者:Luik, Annemarie I.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MEREDITH JOANNE LOTZ WALLACE其他文献
MEREDITH JOANNE LOTZ WALLACE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MEREDITH JOANNE LOTZ WALLACE', 18)}}的其他基金
Sleep Health Profiles and Mortality Risk in Older Adults: A Multi-Cohort Application of Novel Statistical Methods
老年人的睡眠健康状况和死亡风险:新型统计方法的多队列应用
- 批准号:
9360318 - 财政年份:2017
- 资助金额:
$ 196.81万 - 项目类别:
Statistical Methods for Developing RDoC-based Multidimensional Profiles
开发基于 RDoC 的多维剖面的统计方法
- 批准号:
8507978 - 财政年份:2013
- 资助金额:
$ 196.81万 - 项目类别:
Statistical Methods for Developing RDoC-based Multidimensional Profiles
开发基于 RDoC 的多维剖面的统计方法
- 批准号:
8643291 - 财政年份:2013
- 资助金额:
$ 196.81万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 196.81万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 196.81万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 196.81万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 196.81万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 196.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 196.81万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 196.81万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 196.81万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 196.81万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 196.81万 - 项目类别:
Miscellaneous Programs