Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
基本信息
- 批准号:10215954
- 负责人:
- 金额:$ 9.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelArchitectureAwardBehaviorBehavioral MechanismsBiological ModelsBiological SciencesBiomedical EngineeringBuffersCRISPR/Cas technologyCalciumCancerousCell Culture TechniquesCell NucleusCellsConfocal MicroscopyCytosolDNADictyopteraDoseDrug CarriersEndocytosisEngineeringEnvironmentFamily suidaeFibroblastsFluorescence Resonance Energy TransferGene SilencingGenesGoalsGrantHypoxiaImmuneIn VitroKineticsLearningLigandsLysosomesMammalian CellMapsMeasuresMentorshipMessenger RNAMicroinjectionsMusNanotubesNational Institute of Biomedical Imaging and BioengineeringNucleic AcidsOutcomePharmacologyPhysiologyProcessPropertyProtein BiosynthesisProteinsRNARegulationReporterResearchResolutionRoleScienceSeriesSiteSmall Interfering RNASpectrum AnalysisStructureSystemTechnical ExpertiseTestingTherapeuticTherapeutic AgentsTrainingTraining ProgramsTransfectionTransformed Cell LineTranslationsUntranslated RNAVesicleWorkWritingbasebiomaterial compatibilitycell typecytotoxicgene therapyimprovedin vitro Modelin vivo Modelinnovative technologiesnanoparticleneoplastic cellnucleasenucleic acid-based therapeuticsparticlephysical scienceprogramsprotein expressionreceptor mediated endocytosisrecruitself assemblytargeted treatmenttherapeutic nanoparticlestooltumoruptake
项目摘要
PROJECT SUMMARY/ABSTRACT: A number of candidate therapies such as CRISPR-Cas9 and gene
silencing require the efficient delivery of functional nucleic acids to the cell cytosol and nucleus. Unfortunately,
such therapies currently lack proper delivery mechanisms, precluding their widespread applicability. Self-
assembled deoxyribonucleic acid (DNA) nanoparticles have shown potential as minimally cytotoxic
therapeutic carriers in cancerous and other in vitro and in vivo models. While evidence suggests that DNA
nanoparticles-based drug carriers can be taken up by mammalian cells via endocytosis, it is unknown
how these DNA nanoparticles can overcome the fate of endocytosis-triggered degradation to reach
the cytosol and, once there, can controllably maintain stability. With the enabling science explaining
their behavior and mechanisms of controlling their stability in the cell cytosol it will be possible to make bold
advances in engineering therapeutic delivery systems. To that end, the proposed work has two overarching
scientific payoffs. Payoff 1, induce endosomal escape and enhanced cytosolic accessibility of DNA
nanoparticles by the integration of calcium in their assembly process. Payoff 2, identify the rate of
breakdown and mechanisms of stabilization of DNA nanoparticles in different types of cell cytosols.
Innovative technologies will be the foci of the PI's training program and will be implemented to achieve the
project goals, namely, multi-step Förster resonance energy transfer spectroscopy for high-resolution
tracking of DNA nanoparticle inside the cell and in vitro cell microinjections enabling study of these
nanoparticles directly in the cytosolic environment. First, a DNA origami based nanotube will be tested for
structural stability in calcium-supplemented buffer. Thereafter, the nanotube will be used as a carrier for
the delivery of functional RNA molecules to representative fluorescent protein-expressing cells and checked
for its cytosolic reachability and efficacy in protein regulation after undergoing endocytosis. Second, small
(20 nm) DNA nanoparticles with branched architecture and non-canonical nucleic acids will be embedded
with multi-step FRET reporters for measuring structural integrity. These DNA nanoparticles will be
microinjected into live cells cytosolic region and their breakage be determined. Last, the cytosolic stability
of these DNA nanoparticles will be correlated with different types of mammalian cells with known cytosolic
variability (tumor, immune, and other cell types) in order to map the role of structurally diverse DNA
nanoparticles in targeting cells with different physiologies. The PI will also receive training in rigorous
analysis of in vitro research, lab management, and the prolific grant writing process, which will facilitate
their transition to an independent research program. Outcomes of this project will pave the way towards
developing more bio-compatible delivery systems, specifically for functional nucleic acid therapeutic agents
that are vital in the cell cytosol.
项目摘要/摘要:CRISPR-Cas9和基因编辑等一系列候选疗法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Divita Mathur其他文献
Divita Mathur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Divita Mathur', 18)}}的其他基金
Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
- 批准号:
10400170 - 财政年份:2021
- 资助金额:
$ 9.29万 - 项目类别:
Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
- 批准号:
10681601 - 财政年份:2021
- 资助金额:
$ 9.29万 - 项目类别:
Cytosolic Access and Instability of DNA nanoparticles
DNA 纳米颗粒的细胞质进入和不稳定性
- 批准号:
10701061 - 财政年份:2021
- 资助金额:
$ 9.29万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 9.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists