Elucidation of a structural rationale for the binding of Myc by small molecule inhibitors
阐明小分子抑制剂结合 Myc 的结构原理
基本信息
- 批准号:10216159
- 负责人:
- 金额:$ 4.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAmino Acid SequenceAmino AcidsAnabolismBehaviorBindingBinding ProteinsBiological AssayBiophysicsC-terminalCell physiologyCellsClinicalCo-ImmunoprecipitationsCodeCoupledCrystallizationDataDegradation PathwayDevelopmentDiseaseDrug DesignDrug KineticsEnsureEntropyEventFree EnergyGoalsHot SpotHumanHydrophobicityIn VitroInterferometryKnowledgeMYC Family ProteinMYC geneMalignant - descriptorMalignant NeoplasmsMedical ResearchMetabolismMolecularMolecular ConformationOncogenesPhosphorylationPhosphotransferasesPopulationProteinsRecombinant ProteinsResearchRoleSite-Directed MutagenesisSpecificitySpectrum AnalysisStretchingStructureSurfaceSurface Plasmon ResonanceSystemTestingTherapeuticTimeWorkbasebiophysical propertiescancer typecell transformationdriving forcedrug discoveryexperimental studyflexibilityglycogen synthase kinase 3 betainhibitor/antagonistmembermutantpreclinical studyprotein degradationprotein foldingresearch and developmentscreeningsmall moleculesmall molecule inhibitortheoriesthree dimensional structuretranscription factorvirtual
项目摘要
Project Summary
Myc is a transcription factor essential for vital cellular processes such as proliferation, differentiation, metabolism
and biosynthesis. As a result, it is often coopted during malignant transformation of cells and deregulated Myc
expression occurs in virtually all cancer types. Given this role as a prominent oncogene, Myc is widely regarded
as a high value cancer target. However, direct inhibition of Myc has been unsuccessful despite decades of
research and development efforts. Myc is an intrinsically disordered protein (IDP) and therefore it lacks a unique,
defined three-dimensional structure, which has made it extremely difficult to identify small molecule inhibitors
based on traditional structure-based drug design paradigms. Instead, the protein has conformational flexibility
and can access a large variety of different structures, which explains how it can recognize and bind a diverse
assortment of protein partners dependent on cellular context. Notwithstanding the lack of any defined pockets in
the Myc protein, several groups have identified small molecules that can disrupt Myc function. However, none of
these inhibitors have made it to rigorous preclinical studies due to poor pharmacokinetic profiles and weak
potency. Furthermore, there have been little to no studies demonstrating target engagement by small molecule
probes of Myc in cells. This work is addressing these key barriers to progress.
Small molecule binding to intrinsically disordered proteins is governed by different biophysical driving forces
compared to binding of small molecules to globular, folded proteins. Binding to IDPs causes a shift in the
population of available conformations and the resulting increase in entropy is the main driver of the free energy
of binding. However, binding events only occur within regions on IDPs which are less disordered and more
hydrophobic, providing for key, despite being relatively weak, enthalpic interactions that ensure specificity of
binding. I hypothesize that Myc possesses a sequence of amino acids that serves as a small molecule
binding hotspot. Using a panel of Myc mutant constructs, coupled with biotinylated small molecule Myc binders,
I will elucidate the role of this Myc binding hotspot in small molecule recognition. I also hypothesize that a shift
in conformational space occurs as a result of binding this Myc hotspot which directly results in an
increased rate of Myc protein degradation. My preliminary data suggests that small molecule binding of Myc
promotes increased interaction with proteins involved in the Myc phosphorylation and degradation pathway.
Therefore, I will also elucidate how binding impacts Myc protein degradation. These experiments will advance
our understanding of the factors that promote binding to IDPs and how we can leverage them to progress towards
the ultimate goal of identifying a suitable clinical small molecule Myc inhibitor.
项目摘要
Myc是一种重要的转录因子,参与细胞的增殖、分化、代谢等过程
和生物合成。因此,在细胞恶性转化和Myc失调控过程中,
几乎在所有类型的癌症中都有表达。鉴于Myc作为一个重要的致癌基因的作用,
作为高价值的癌症靶点。然而,直接抑制Myc一直是不成功的,尽管几十年来,
研究和开发工作。Myc是一种内在无序蛋白(IDP),因此它缺乏一个独特的,
定义的三维结构,这使得识别小分子抑制剂变得非常困难
基于传统的基于结构的药物设计范例。相反,该蛋白质具有构象灵活性
并且可以访问各种不同的结构,这解释了它如何识别和结合各种各样的
蛋白质伴侣的分类取决于细胞环境。尽管缺乏任何明确的口袋里,
Myc蛋白,几个研究小组已经鉴定出可以破坏Myc功能的小分子。但是没有一
这些抑制剂由于药代动力学特性差和弱的
力量此外,几乎没有研究表明小分子的靶向接合,
Myc在细胞中的作用这项工作正在解决这些阻碍进展的关键障碍。
小分子与内在无序蛋白质的结合受不同的生物物理驱动力控制
与小分子与球状折叠蛋白质的结合相比。与国内流离失所者的结合导致
可用构象的数量和由此产生的熵的增加是自由能的主要驱动力
的约束。然而,结合事件仅发生在IDP上的区域内,这些区域较不无序且较不稳定。
疏水的,提供关键的,尽管是相对弱的,疏水的相互作用,确保特异性,
约束力我假设Myc拥有一个氨基酸序列,
结合热点使用一组Myc突变体构建体,与生物素化的小分子Myc结合剂偶联,
我将阐明这种Myc结合热点在小分子识别中的作用。我还假设
在构象空间中,由于结合该Myc热点而发生,其直接导致
Myc蛋白降解速率增加。我的初步数据表明Myc的小分子结合
促进与参与Myc磷酸化和降解途径的蛋白质的相互作用增加。
因此,我也将阐明结合如何影响Myc蛋白降解。这些实验将推进
我们对促进与境内流离失所者联系的因素的理解,以及我们如何利用这些因素,
最终目标是鉴定合适的临床小分子Myc抑制剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihai Ioan Truica其他文献
Mihai Ioan Truica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihai Ioan Truica', 18)}}的其他基金
Elucidation of a structural rationale for the binding of Myc by small molecule inhibitors
阐明小分子抑制剂结合 Myc 的结构原理
- 批准号:
10621176 - 财政年份:2020
- 资助金额:
$ 4.22万 - 项目类别:
Elucidation of a structural rationale for the binding of Myc by small molecule inhibitors
阐明小分子抑制剂结合 Myc 的结构原理
- 批准号:
10398915 - 财政年份:2020
- 资助金额:
$ 4.22万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Continuing Grant