CRCNS: Avian Model for Neural Activity Driven Speech Prostheses

CRCNS:神经活动驱动言语假肢的鸟类模型

基本信息

  • 批准号:
    10216216
  • 负责人:
  • 金额:
    $ 33.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Understanding the physical, computational, and theoretical bases of human vocal communication, speech, is crucial to improved comprehension of voice, speech and language diseases and disorders, and improving their diagnosis, treatment and prevention. Meeting this challenge requires knowledge of the neural and sensorimotor mechanisms of vocal motor control. Our project will directly investigate the neural and sensorimotor mechanisms involved in the production of complex, natural, vocal communication signals. Our results will directly enhance brain-computer interface technology for communication and will accelerate the development of prostheses and other assistive technologies for individuals with communications deficits due to injury or disease. We will develop a vocal prosthetic that directly translates neural signals in cortical sensorimotor and vocal-motor control regions into vocal communication signals output in real-time. Building on success using non-human primates for brain computer interfaces for general motor control, the prosthetic will be developed in songbirds, whose acoustically rich, learned vocalizations share many features with human speech. Because the songbird vocal apparatus is functipnally and anatomically similar to the human larynx, and the cortical regions that control it are closely analogous to speech motor-control areas of the human brain, songbirds offer an ideal model for the proposed studies. Beyond the application of our work to human voice and speech, development of the vocal prosthetic will enable novel speech-relevant studies in the songbird model that can reveal fundamental mechanisms of vocal learning and production. In the first stage of the project, we collect a large data set of simultaneously recorded neural activity and vocalizations. In stage two, we will apply machine learning and artificial intelligence techniques to develop algorithms that map neural recordings to vocal output and enable us to estimate intended vocalizations directly from neural data. In stage three, we will develop computing infrastructure to run these algorithms in real-time, predicting intended vocalizations from neural activity as the animal is actively producing these vocalizations. In stage four, we will test the effectiveness of the prosthetic by substituting the bird's own vocalization with the output from our prosthetic system. Success will set the stage for testing of these technologies in humans and translation to multiple assistive devices. In addition to our research goals, the project will engage graduate, undergraduate, and high school students through the development of novel educational modules that introduce students to brain machine interface and multidisciplinary studies that span engineering and the basic sciences. RELEVANCE (See instructions): Developing a vocal prosthesis will directly enhance brain-computer interface technology for communication and accelerate the realization of prostheses and other assistive technologies for individuals with communications deficits due to injury or disease. The basic knowledge of the neural and sensorimotor mechanisms of vocal motor control acquired will impact understanding of multiple voice, speech, and language diseases and disorders. The techniques developed will enabling novel future studies of vocal production and development.
理解人类声音交流的物理,计算和理论基础,演讲, 对于改善对声音、言语和语言疾病和障碍的理解至关重要, 改善他们的诊断、治疗和预防。应对这一挑战需要了解 发声运动控制的神经和感觉运动机制。我们的项目将直接研究 和感觉运动机制参与了复杂的、自然的、声音的交流 信号.我们的研究结果将直接增强用于通信的脑机接口技术, 加快为残疾人开发假肢和其他辅助技术 由于受伤或疾病导致的沟通障碍。我们将开发一种发音假肢, 皮层感觉运动和发声运动控制区的神经信号转化为发声通信信号 实时输出。利用非人类灵长类动物作为脑机接口的成功基础, 一般运动控制,假肢将在鸣禽,其声学丰富,学习 发声与人类语言有许多共同的特征。因为鸣禽的发声器官 在功能和解剖学上与人类喉部相似,控制它的皮质区域与人类的喉部密切相关。 类似于人类大脑的语言运动控制区域,鸣禽提供了一个理想的模型, 建议的研究。除了将我们的工作应用于人类的声音和言语之外, 声音假体将使新的语音相关研究在鸣禽模型,可以揭示 发声学习和发声的基本机制。在项目的第一阶段,我们收集了 同时记录神经活动和发声的大数据集。在第二阶段,我们将申请 机器学习和人工智能技术,以开发将神经记录映射到 声音输出,使我们能够直接从神经数据估计预期的发声。在第三阶段,我们 将开发计算基础设施来实时运行这些算法,预测预期的发声 因为动物正在积极地发出这些声音。在第四阶段,我们将测试 通过用我们假肢的输出代替鸟自己的发声来提高假肢的有效性 系统成功将为这些技术在人类身上的测试和向多个领域的转化奠定基础。 辅助设备。除了我们的研究目标,该项目将从事研究生,本科生, 通过开发新颖的教育模块,向学生介绍 脑机接口和跨工程和基础科学的多学科研究。 相关性(参见说明): 开发发声假体将直接增强用于通信的脑机接口技术 加快实现假肢和其他辅助技术, 由于受伤或疾病导致的沟通障碍。神经和感觉运动的基础知识 获得的发声运动控制机制将影响对多种声音、言语和 语言疾病和障碍。该技术的发展将使新的未来研究的声乐 生产和发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIMOTHY Q GENTNER其他文献

TIMOTHY Q GENTNER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIMOTHY Q GENTNER', 18)}}的其他基金

Temporal Pattern Perception Mechanisms for Acoustic Communication
声音交流的时间模式感知机制
  • 批准号:
    10160864
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
Temporal Pattern Perception Mechanisms for Acoustic Communication
声音交流的时间模式感知机制
  • 批准号:
    10407633
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
CRCNS: Avian Model for Neural Activity Driven Speech Prostheses
CRCNS:神经活动驱动言语假肢的鸟类模型
  • 批准号:
    10408524
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
CRCNS: Avian Model for Neural Activity Driven Speech Prostheses
CRCNS:神经活动驱动言语假肢的鸟类模型
  • 批准号:
    9981725
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
CRCNS: Avian Model for Neural Activity Driven Speech Prostheses
CRCNS:神经活动驱动言语假肢的鸟类模型
  • 批准号:
    9916239
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
Temporal Pattern Perception Mechanisms for Acoustic Communication
声音交流的时间模式感知机制
  • 批准号:
    10624335
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
Temporal Pattern Perception Mechanisms for Acoustic Communication
声音交流的时间模式感知机制
  • 批准号:
    9803507
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
CRCNS: Avian Model for Neural Activity Driven Speech Prostheses
CRCNS:神经活动驱动言语假肢的鸟类模型
  • 批准号:
    10452530
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
CRCNS: Avian Model for Neural Activity Driven Speech Prostheses
CRCNS:神经活动驱动言语假肢的鸟类模型
  • 批准号:
    10671028
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
Neural mechanisms of auditory temporal pattern perception
听觉时间模式感知的神经机制
  • 批准号:
    9527903
  • 财政年份:
    2017
  • 资助金额:
    $ 33.33万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了