Decoding vomocytosis for cell-medaited, intra-lymph nodal delivery of microparticle vaccines
解码胞浆作用以实现细胞介导的微粒疫苗的淋巴结内递送
基本信息
- 批准号:10216305
- 负责人:
- 金额:$ 37.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Adaptive Immune SystemBehaviorBiochemistryBiocompatible MaterialsBiological ProcessBiophysicsCell physiologyCellsCryptococcus neoformansCytoplasmDendritic CellsDevelopmentDiseaseDrug Delivery SystemsEngineeringEnvironmentEnzymesExocytosisFoundationsGoalsImmuneImmune systemImmunologyImmunotherapeutic agentInfectious AgentInstructionInvestigationLaboratoriesLymphMediatingMissionMotivationNational Institute of General Medical SciencesNodalNonlyticParticulateParticulate MatterPathologyPeripheralPhagocytesPhagocytosisPhagosomesPreventionProcessReactive Oxygen SpeciesReportingResearchResearch SupportSystemTissuesVaccinesVacuoleVesicleWorkZika Virusdesigndisease diagnosisglobal healthhealth organizationimmunoregulationlymph nodeslymphatic vessellymphoid organmacrophagemimeticsmultidisciplinarynext generationnovelparticleprogramsprophylacticresearch and developmenttraffickinguptakevaccine deliveryvaccinology
项目摘要
DECODING VOMOCYTOSIS FOR CELL-MEDIATED, INTRA-LYMPH NODAL DELIVERY OF MICROPARTICLE VACCINES
ABSTRACT/ SUMMARY
The Immuno-modulatory Biomaterials Laboratory at UC Davis focuses on the development of novel
biomaterial systems that can manipulate the immune system. Our goal is to design the next generation of
immunotherapeutics for applications in immune-related diseases. This multidisciplinary work incorporates
aspects of biomaterials engineering, drug delivery, immunology, biochemistry, and cell physiology. One of the
main research programs in our lab is understanding controlled vomocytosis (non-lytic exocytosis) of particulate
matter from phagocytic cells. Our primary motivation for elucidation of this process is the development of a `smart'
microparticle system that can accomplish phagocytic cell-mediated delivery of vaccines directly to the lymph
node-residing cells. Phagocytic cells (particularly macrophages [MΦ] and dendritic cells [DCs])) have evolved to
circulate through peripheral tissue, engulf foreign particulate matter and traffick to the lymph node following
uptake to relay information about the peripheral environment to cellular agents of the adaptive immune system.
Evidently, phagocytic cells can transport particulate materials from peripheral tissues to lymphatic organs.
Typically, following phagocytosis, and as phagocytic cells traverse the lymphatic vessels, materials that have
been engulfed are taken into the phagosome (vacuole in the cytoplasm of a cell containing a phagocytosed
particles) where a degradative process occurs due to secretion of reactive oxygen species (ROS), acidic pH and
digestive enzymes. This stage would be counterproductive to the integrity of a particulate, and our purpose of
intra-lymph nodal delivery. Moreover, release of particles from the phagocytic cell is not an intrinsic quality. But,
there is precedent for such behavior. The fungal cell, Cryptococcus neoformans, elicits vomocytosis or (non-lytic
exocytosis) from macrophages. There is still little understanding about the mechanisms governing this
phenomena. Some reports indicate that there is an increase in pH of the phagosome during this activity, others
have suggested Ca2+ flux could be pivotal for vesicle exocytosis. We believe that elucidation of the intra-
phagosomal physico-chemical conditions that propel this activity could be instructive for the design of a mimetic
microparticle. Further, investigation of the transcriptomal signatures between the period of phagocytosis and
exocytosis could give us clues as to what biophysical factors are altered in the phagosome. Ultimately, our long-
term goal is develop universally-deployable, microparticle vaccine platform as an effective, long-lasting
prophylactic against infectious agents. The research and development of this platform system has the potential
to significantly transform the treatment of a plethora of immune pathologies. Therefore, the proposed program is
highly relevant to the mission of the National Institute of General Medical Sciences (NIGMS), which pertains to
supporting research that increases understanding of biological processes and lays the foundation for advances
in disease diagnosis, treatment and prevention.
用于细胞介导的,淋巴的淋巴结液的呕吐作用,微颗粒疫苗的疫苗
摘要/摘要
加州大学戴维斯分校的免疫调节生物材料实验室的重点是新型的发展
可以操纵免疫系统的生物材料系统。我们的目标是设计下一代
用于免疫相关疾病应用的免疫治疗药。这项多学科的工作
生物材料工程,药物输送,免疫学,生物化学和细胞生理学方面的各个方面。中的一个
我们实验室中的主要研究计划是了解特定石的受控呕吐(非散囊胞吞)
来自吞噬细胞的物质。我们阐明这一过程的主要动机是开发“智能”
可以直接完成吞噬细胞介导的疫苗递送到淋巴的微粒系统
节点保留细胞。吞噬细胞(尤其是巨噬细胞[Mφ]和树突状细胞[DCS])已经演变为
通过外周组织,吞噬外来特定物质和淋巴结的流量
接收有关外围环境的信息到自适应免疫系统的细胞剂。
显然,吞噬细胞可以将特定材料从外周组织运输到淋巴器官。
通常,吞噬作用和吞噬细胞遍历淋巴管,具有
他们被吞噬被吞噬成吞噬体(液泡在包含吞噬细胞的细胞的细胞质中
粒子)由于活性氧(ROS),酸性pH和
消化酶。这个阶段将对特定的完整性适得其反,我们的目的
淋巴结内递送。此外,从吞噬细胞中释放颗粒不是固有的质量。但,
这种行为有先例。真菌细胞,加密环球机构,引起呕吐或(非lytict)
巨噬细胞的胞吞作用)。对此的机制仍然很少了解
现象。一些报告表明,在此活动期间,吞噬体的pH值有所增加,另一些则
已经建议Ca2+通量可能是蔬菜胞吐作用的关键。我们认为阐明内部
推动此活动的吞噬体物理化学条件可能对模仿的设计具有启发性
微粒。此外,研究吞噬时期和
胞吐作用可以为我们提供有关吞噬体中哪些生物物理因子的线索。最终,我们的长期
术语目标是普遍开发的,可普遍使用的微粒疫苗平台,作为一种有效的,持久的
预防性对传染剂的预防性。该平台系统的研究和开发具有潜力
显着转化了多种免疫病理的治疗。因此,拟议的程序是
与国家一般医学科学研究所(NIGMS)的任务高度相关,该任务与
支持增加对生物过程的理解并为进步奠定基础的研究
在疾病诊断,治疗和预防中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamal S Lewis其他文献
Jamal S Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jamal S Lewis', 18)}}的其他基金
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10623684 - 财政年份:2019
- 资助金额:
$ 37.81万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10203795 - 财政年份:2019
- 资助金额:
$ 37.81万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
9982765 - 财政年份:2019
- 资助金额:
$ 37.81万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10676258 - 财政年份:2019
- 资助金额:
$ 37.81万 - 项目类别:
Decoding vomocytosis for cell-medaited, intra-lymph nodal delivery of microparticle vaccines
解码胞浆作用以实现细胞介导的微粒疫苗的淋巴结内递送
- 批准号:
9924928 - 财政年份:2017
- 资助金额:
$ 37.81万 - 项目类别:
Decoding vomocytosis for cell-medaited, intra-lymph nodal delivery of microparticle vaccines
解码胞浆作用以实现细胞介导的微粒疫苗的淋巴结内递送
- 批准号:
9980437 - 财政年份:2017
- 资助金额:
$ 37.81万 - 项目类别:
Polymeric biomaterial-based microparticle vaccine for amelioration of Type 1 diab
用于改善 1 型糖尿病的基于聚合物生物材料的微粒疫苗
- 批准号:
8592629 - 财政年份:2013
- 资助金额:
$ 37.81万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
- 批准号:52365047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
- 批准号:52372217
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
- 批准号:52371070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
- 批准号:52370026
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Regulation of Peripheral Neuropathic Pain by B Cells
B 细胞对周围神经病理性疼痛的调节
- 批准号:
10417954 - 财政年份:2022
- 资助金额:
$ 37.81万 - 项目类别:
Regulation of Peripheral Neuropathic Pain by B Cells
B 细胞对周围神经病理性疼痛的调节
- 批准号:
10588250 - 财政年份:2022
- 资助金额:
$ 37.81万 - 项目类别:
Decoding vomocytosis for cell-medaited, intra-lymph nodal delivery of microparticle vaccines
解码胞浆作用以实现细胞介导的微粒疫苗的淋巴结内递送
- 批准号:
9924928 - 财政年份:2017
- 资助金额:
$ 37.81万 - 项目类别:
Decoding vomocytosis for cell-medaited, intra-lymph nodal delivery of microparticle vaccines
解码胞浆作用以实现细胞介导的微粒疫苗的淋巴结内递送
- 批准号:
9980437 - 财政年份:2017
- 资助金额:
$ 37.81万 - 项目类别: