Longitudinal dynamics of protection after influenza infection and vaccination
流感感染和疫苗接种后保护的纵向动态
基本信息
- 批准号:10219053
- 负责人:
- 金额:$ 46.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAffectAgeAntibody ResponseAntibody titer measurementAntigensAvian InfluenzaBiologicalBirthCessation of lifeCharacteristicsChildChildhoodCohort StudiesComplexComplicationComputer softwareDataDependenceDevelopmentDevelopment PlansEffectivenessEpidemiologyEvolutionExposure toFormulationFutureHouseholdImmuneImmune responseImmunityImmunologic MemoryIndividualInfectionInfluenzaInfluenza A virusInfluenza vaccinationKnowledgeLifeMathematicsMeasuresMethodsModelingNicaraguaPatternPediatric cohortPredispositionPrimary InfectionPublic HealthRecording of previous eventsResearchRiskRoleSamplingSeasonsSerologySeveritiesShapesStrategic PlanningSymptomsTechniquesTimeUnited States National Institutes of HealthVaccinationVaccinesVariantViralVirus DiseasesWorkadaptive immune responseassociated symptomcohortdiverse dataflexibilityimprintimprovedinfection riskinfluenza infectioninfluenza virus straininfluenza virus vaccinelongitudinal datasetmathematical modelnext generationpathogenrespiratoryresponseseasonal influenzasexsuccesstooltransmission processuniversal influenza vaccine
项目摘要
PROJECT SUMMARY
Individuals’ adaptive immune responses are central to the epidemiology and evolution of influenza and the
effectiveness of influenza vaccines. It is therefore surprising that despite nearly 70 years of study, major
questions about the immune response to influenza remain unanswered. In particular, it is unclear how well
natural infection protects from reinfection with the same or related types and subtypes, how vaccination affects
protection against symptomatic and asymptomatic infections over time, and how protection varies with immune
history, age, individual, sex, and other factors. The two main obstacles to progress have been a shortage of
observations from the same individuals over time and a lack of modeling approaches that can accommodate the
complex, stochastic dynamics of infection and immune response replicated across individuals. The proposed
research takes advantage of an extraordinary influenza cohort and new methods for longitudinal modeling to
understand how protection to influenza infections of varying severity arises, and especially how it is shaped by
infection and vaccination history. The ongoing Nicaragua Pediatric Influenza Cohort Study (NPICS) has followed
thousands of children since 2011 and recorded their antibody titers, infections, symptoms, and vaccination
history to influenza. We will use these data to fit and evaluate a large set of stochastic, individual-level,
mechanistic, dynamical models to estimate the duration of protection and its dependence on exposure history
and other factors. First, we will estimate the duration of protection against reinfection with the same type or
subtype and evaluate its dependence on the order of early exposures and host and viral characteristics. Next,
we will measure the strength and duration of cross-protection between type and subtypes. Finally, we will
compare the dynamics of protection after natural infection to those after vaccination, including repeat
vaccinations. Our flexible modeling approach takes advantage of diverse data types and inference techniques
while allowing precise formulation of biological hypotheses mathematically. Its recent success with similar
longitudinal datasets of PCR-confirmed viral infections and influenza serology demonstrates feasibility.
Preliminary results suggest a role of exposure history on heterosubtypic infection risk. This work is poised to
advance basic knowledge on influenza and the development of immune memory, and it will provide a new set of
dynamical modeling tools for longitudinal data. This project will thus achieve NIH MIDAS objectives by advancing
the development of inference techniques and software for an important and growing type of data and by
expanding knowledge of an important host-pathogen dynamic. This work also directly addresses priorities
established by the NIH Strategic Plan for the development of a universal influenza vaccine, especially identifying
factors associated with the severity of influenza (objective 1.2) and improving understanding of how and when
exposure to influenza antigens shapes the response to infection and vaccination (objective 2.1).
项目摘要
个体的适应性免疫应答对于流感的流行病学和演变至关重要,
流感疫苗的有效性。因此,令人惊讶的是,尽管近70年的研究,主要
关于对流感的免疫反应的问题仍然没有答案。特别是,目前还不清楚
自然感染可以防止相同或相关类型和亚型的再感染,疫苗接种如何影响
随着时间的推移,对有症状和无症状感染的保护,以及保护如何随着免疫的变化而变化,
病史、年龄、个体、性别和其他因素。取得进展的两个主要障碍是缺乏
随着时间的推移,来自同一个人的观察,以及缺乏可以适应
感染和免疫反应在个体间复制的复杂随机动态。拟议
研究利用了一个非凡的流感队列和纵向建模的新方法,
了解如何保护不同严重程度的流感感染,特别是如何形成的,
感染和疫苗接种史。正在进行的尼加拉瓜儿童流感队列研究(NPICS)
自2011年以来,成千上万的儿童,并记录了他们的抗体滴度,感染,症状和疫苗接种
流感的历史我们将使用这些数据来拟合和评估一组随机的,个人水平的,
估计保护持续时间及其对暴露历史的依赖性的机械动力学模型
等因素首先,我们将估计对同一类型或
亚型,并评估其对早期暴露顺序以及宿主和病毒特征的依赖性。接下来,
我们将测量类型和亚型之间交叉保护的强度和持续时间。最后我们将
比较自然感染后和接种疫苗后的保护动态,包括重复接种
接种疫苗我们灵活的建模方法利用了各种数据类型和推理技术
同时允许生物学假设的精确公式化。它最近的成功与类似的
PCR确认的病毒感染和流感血清学的纵向数据集证明了可行性。
初步结果表明,暴露史对异亚型感染风险的作用。这项工作准备
提高对流感的基本认识和免疫记忆的发展,它将提供一套新的
纵向数据的动态建模工具。因此,该项目将通过推进实现NIH MIDAS目标
为一种重要的、不断增长的数据类型开发推理技术和软件,
扩大了对一个重要的宿主-病原体动态的了解。这项工作还直接涉及优先事项
由NIH战略计划建立,用于开发通用流感疫苗,特别是确定
与流感严重程度相关的因素(目标1.2),并进一步了解如何以及何时
暴露于流感抗原影响对感染和疫苗接种的反应(目标2.1)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Cobey其他文献
Sarah Cobey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Cobey', 18)}}的其他基金
Longitudinal dynamics of protection after influenza infection and vaccination
流感感染和疫苗接种后保护的纵向动态
- 批准号:
10442728 - 财政年份:2019
- 资助金额:
$ 46.53万 - 项目类别:
Signatures of Immunity on the Antigenic Diversity of Pathogens
病原体抗原多样性的免疫特征
- 批准号:
8125740 - 财政年份:2011
- 资助金额:
$ 46.53万 - 项目类别:
Signatures of Immunity on the Antigenic Diversity of Pathogens
病原体抗原多样性的免疫特征
- 批准号:
8330974 - 财政年份:2011
- 资助金额:
$ 46.53万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 46.53万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 46.53万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 46.53万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 46.53万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别: