New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning
使用多参数 MRI 和机器学习监测脑肿瘤生物标志物的新治疗方法
基本信息
- 批准号:10220248
- 负责人:
- 金额:$ 54.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAreaArtificial IntelligenceBiological MarkersBiopsy SpecimenBrain NeoplasmsBrain regionClinicalContrast MediaDataDevelopmentDiffusionDiffusion Magnetic Resonance ImagingEdemaEnhancing LesionExcisionGlioblastomaGliomaGoalsImageImaging TechniquesIndividualLesionMGMT geneMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModelingMolecularMonitorNewly DiagnosedPatientsPerfusionPhysiologicalPrediction of Response to TherapyPrimary LesionProbabilityRecurrenceSignal TransductionTestingTissue BanksTissue SampleTrainingTumor BurdenTumor MarkersWorkbevacizumabbiomarker developmentblood-brain barrier permeabilizationchemoradiationcontrast enhancedconvolutional neural networkimaging biomarkerimproved outcomeindexinginterestmagnetic resonance imaging biomarkermolecular markerneuro-oncologynovelnovel markeroutcome predictionpredictive modelingprospectiveresponsetreatment effecttumor
项目摘要
Project Summary/Abstract
The goal of this project is to develop and evaluate novel imaging biomarker(s) that use multiparameter MRI
methods to identify the true spatial extent of glial brain tumors. The standard RANO (response assessment in
neuro-oncology) criteria define tumor extent as the region of bright signal on post-contrast agent T1w (T1+C)
images, termed the contrast enhancing lesion (CEL), along with the peritumoral bright signal on T2w FLAIR
images, referred to as non-enhancing lesion (NEL). Yet, the CEL reflects the permeability of the blood-brain
barrier to contrast agent and can appear the same for both tumor and treatment effect. Likewise, though NEL
likely contains tumor, current imaging cannot distinguish tumor from edema. These difficulties result in the
inability of current anatomical MRI methods to determine the true spatial extent of glial tumors, a
serious limitation for treatment management of brain tumor patients.
We and others have shown that advanced MRI methods, including perfusion and diffusion MRI, are useful for
assessing tumor grade, predicting outcomes, or distinguishing tumor from treatment effect. Yet, almost
exclusively, the approach has been to extract mean values of a single physiological parameter from
predetermined tumor regions of interest and then measure their correlation with the desired clinical index.
Although this approach has been useful for initial biomarker development, it underutilizes the rich
multiparameter and spatial information available, thus motivating the current study. First, two multiparameter
MRI biomarkers will be developed to identify enhancing and infiltrating tumor burden. Then, they will be
evaluated individually and in combination to assess the total tumor burden in comparison with the standard
volumetric metrics in current use.
The development and testing of these biomarkers will be accomplished in several independent steps outlined
by the proposed aims. First (Aim 1), we propose to develop an MRI biomarker that gives the voxelwise
probability of enhancing tumor burden within CEL, with early results showing the ability to distinguish tumor
from treatment effect. Next, we will develop a multiparameter biomarker capable of identifying infiltrating tumor
within NEL (Aim 2). These efforts leverage our previous results using artificial intelligence, recent advances in
machine learning, and our unique brain tumor tissue bank with hundreds of biopsy samples spatially matched
to imaging. Finally (Aim 3), the spatial extent of tumor burden within CEL and NEL will be tested in their ability
to distinguish pseudo-progression/response from true progression/response, which is a primary question that
confounds treatment management today.
In summary, multiparameter advanced MRI biomarkers of enhancing and infiltrative brain tumor have the
potential to cause a paradigm shift in how treatment is managed, ultimately resulting in improved outcomes.
项目概要/摘要
该项目的目标是开发和评估使用多参数 MRI 的新型成像生物标志物
确定胶质脑肿瘤真实空间范围的方法。标准 RANO(反应评估)
神经肿瘤学)标准将肿瘤范围定义为造影剂后 T1w (T1+C) 上的亮信号区域
图像,称为对比增强病变 (CEL),以及 T2w FLAIR 上的瘤周亮信号
图像,称为非增强病变(NEL)。然而,CEL 反映了血脑的通透性
对造影剂具有屏障作用,并且对于肿瘤和治疗效果可能表现出相同的效果。同样,尽管 NEL
可能含有肿瘤,目前的影像学无法区分肿瘤和水肿。这些困难导致
当前的解剖 MRI 方法无法确定神经胶质瘤的真实空间范围,
脑肿瘤患者的治疗管理受到严重限制。
我们和其他人已经证明先进的 MRI 方法,包括灌注和扩散 MRI,对于
评估肿瘤等级、预测结果或区分肿瘤与治疗效果。然而,几乎
排他地,该方法是从其中提取单个生理参数的平均值
预先确定感兴趣的肿瘤区域,然后测量它们与所需临床指标的相关性。
尽管这种方法对于最初的生物标志物开发很有用,但它没有充分利用丰富的资源
多参数和空间信息可用,从而激发了当前的研究。一、两个多参数
将开发 MRI 生物标志物来识别增强和浸润的肿瘤负荷。那么,他们将是
单独和组合评估以评估与标准相比的总肿瘤负荷
当前使用的体积指标。
这些生物标志物的开发和测试将通过概述的几个独立步骤来完成
通过拟议的目标。首先(目标 1),我们建议开发一种 MRI 生物标志物,可以提供体素
增强 CEL 内肿瘤负荷的可能性,早期结果显示区分肿瘤的能力
从治疗效果来看。接下来,我们将开发一种能够识别浸润性肿瘤的多参数生物标志物
在 NEL 范围内(目标 2)。这些努力利用了我们之前使用人工智能的成果、最近的进展
机器学习,以及我们独特的脑肿瘤组织库,其中包含数百个空间匹配的活检样本
到成像。最后(目标 3),将测试 CEL 和 NEL 内肿瘤负荷的空间范围
区分伪进展/反应与真实进展/反应,这是一个主要问题
混淆了当今的治疗管理。
总之,增强型和浸润性脑肿瘤的多参数先进 MRI 生物标志物具有
可能会导致治疗管理方式发生范式转变,最终改善结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN Marie SCHMAINDA其他文献
KATHLEEN Marie SCHMAINDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN Marie SCHMAINDA', 18)}}的其他基金
New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning
使用多参数 MRI 和机器学习监测脑肿瘤生物标志物的新治疗方法
- 批准号:
10595516 - 财政年份:2021
- 资助金额:
$ 54.77万 - 项目类别:
New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning
使用多参数 MRI 和机器学习监测脑肿瘤生物标志物的新治疗方法
- 批准号:
10392483 - 财政年份:2021
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
9212106 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10250327 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10006506 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
9000135 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10683139 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
8814188 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10454386 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
8631484 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 54.77万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Studentship














{{item.name}}会员




