Biomechanical and neural mechanisms of post-stroke gait training

中风后步态训练的生物力学和神经机制

基本信息

  • 批准号:
    10219315
  • 负责人:
  • 金额:
    $ 61.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-02 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Stroke induces a cascade of neurophysiologic changes in cortical and spinal circuits that result in biomechanical gait impairments (reduced paretic propulsion, footdrop) and gait dysfunction (reduced speed). While increasing gait speed is a major goal of stroke gait rehabilitation, targeting walking speed as a primary gait rehabilitation outcome without regard to biomechanical and neural mechanisms fails to meet the emerging standards of precision medicine, which is the future of rehabilitation research. Thus, here, we will confirm a novel theoretical framework regarding neurobiological (top-­down) and biomechanics (bottom-­up) mechanisms of how 2 gait treatments improve walking speed post-­stroke. Fast treadmill walking (Fast), a well-­ studied and clinically-­used intervention, improves gait speed. However, Fast-­induced speed improvements in people post-­stroke may occur at the cost of inter-­limb asymmetry, energy inefficiency, and maladaptive neuroplasticity. Recent work has demonstrated that combining Fast with functional electrical stimulation (FastFES) not only leads to improvements in gait speed but also reduces energy cost (EC) of stroke gait. Because reduced EC is crucial for sustaining faster gait speeds and promoting community activity, biomechanical factors influencing EC post-­stroke merit more in-­depth study. Building upon knowledge gained from previous FastFES work and our preliminary data, Aim 1 will test our hypothesis that in contrast to Fast, FastFES promotes greater use of the paretic leg for forward propulsion, thereby improving inter-­limb biomechanical asymmetry, which we hypothesize reduces EC. Gait rehabilitation essentially involves retraining the central nervous system. Our lack of understanding of neuroplasticity mechanisms underlying gait interventions continues to be a barrier to improving gait rehabilitation outcomes. Aim 2 will determine, for the first time, if and how FastFES and Fast modulate excitability of neural circuits impacted by stroke and implicated in locomotor control. Stroke leads to decrease in lesioned motor cortex (M1) excitability and corticospinal tract (CST) output, and elevated spinal reflex excitability. New findings from our lab suggest that unlike Fast, FastFES enhances lesioned CST and M1 excitability, restoring more normal CST output. FastFES and Fast also differ in their effects on spinal excitability. Like most gait treatments, Fast and FastFES must contend with high inter-­individual variability in treatment responses (a subset of participants are “non-­ responders”). Aim 3 will address whether baseline measures or short-­term changes in neurophysiological biomarkers (CST and spinal excitability) can predict long-­term training-­effects. Results from our mechanism-­ focused clinical investigation will elucidate how, why, and for whom Fast and FastFES induce clinical benefits. The overall impact of this work will be future development of cutting-­edge gait treatments that are individually-­ tailored based on neurobiological, biomechanical, and clinical characteristics to improve both gait quality and gait function, well-­aligned with the NICHD mission of improving health through ‘optimal’ rehabilitation.
中风在皮层和脊髓回路中引起一连串的神经生理变化,从而导致

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trisha Kesar其他文献

Trisha Kesar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trisha Kesar', 18)}}的其他基金

Locomotion adaptation deficits in older adults with mild cognitive impairment and Alzheimers disease
患有轻度认知障碍和阿尔茨海默病的老年人的运动适应缺陷
  • 批准号:
    10754072
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
Biomechanical and neural mechanisms of post-stroke gait training
中风后步态训练的生物力学和神经机制
  • 批准号:
    10461031
  • 财政年份:
    2019
  • 资助金额:
    $ 61.05万
  • 项目类别:
Cortical and spinal correlates of stroke gait rehabilitation
中风步态康复的皮质和脊髓相关性
  • 批准号:
    8679710
  • 财政年份:
    2014
  • 资助金额:
    $ 61.05万
  • 项目类别:
Cortical and spinal correlates of stroke gait rehabilitation
中风步态康复的皮质和脊髓相关性
  • 批准号:
    9093831
  • 财政年份:
    2014
  • 资助金额:
    $ 61.05万
  • 项目类别:

相似国自然基金

ANKLE2通过调控PINK1减轻脓毒症心肌细胞线粒体钙超载的机制研究
  • 批准号:
    CSTB2023NSCQ-MSX0603
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
影响核膜与内质网膜结构的ANKLE2分子在衰老调控中的关键作用
  • 批准号:
    91649107
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Assist-as-Needed Ankle Assistance Strategy Integrating Immersive MR system for Ensuring Voluntary Effort and Stimulating Neurorepair during Post-Stroke Gait Training
按需协助踝关节辅助策略集成沉浸式 MR 系统,确保中风后步态训练期间的自愿努力并刺激神经修复
  • 批准号:
    24K21161
  • 财政年份:
    2024
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Collaborative R&D
Ankle-and-foot orthotic tailored for complex foot-ankle injury
针对复杂足踝损伤量身定制的踝足矫形器
  • 批准号:
    2895322
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Studentship
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231031
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231032
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Standard Grant
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
  • 批准号:
    10725811
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
Longitudinal Changes in Gait and Ankle Function in Youth with Charcot-Marie-Tooth Disease
患有腓骨肌萎缩症的青少年步态和踝关节功能的纵向变化
  • 批准号:
    10811149
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
EFFECTS OF DISEASE AND PALLIDAL DEEP BRAIN STIMULATION ON ANKLE MUSCLE CONTROL IN PARKINSON'S DISEASE
疾病和苍白球深部脑刺激对帕金森病患者踝关节肌肉控制的影响
  • 批准号:
    10749673
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Standard Grant
Epidemiological Study and Pathophysiology of Ankle Sprain by Direct Examination of Junior High and High School Basketball Players
初高中篮球运动员踝关节扭伤的流行病学及病理生理学直接检查
  • 批准号:
    23K10615
  • 财政年份:
    2023
  • 资助金额:
    $ 61.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了