Bioinformatics, data integration, and knowledge extraction from high throughput proteomics for enabling biomedical applications
生物信息学、数据集成和从高通量蛋白质组学中提取知识,以实现生物医学应用
基本信息
- 批准号:10220051
- 负责人:
- 金额:$ 31.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsAutomobile DrivingBioinformaticsBiologicalBiomedical ResearchCalibrationCloud ComputingCommunitiesComputational algorithmDataData AnalysesData SetDevelopmentDockingEnsureEvaluationFeedbackGoalsIonsIsomerismIsotope LabelingKnowledge ExtractionMeasurementMethodologyMethodsPathway interactionsPeptidesPost-Translational Protein ProcessingProductivityProteinsProteomeProteomicsReproducibilityResearchResource DevelopmentResourcesSamplingSoftware ToolsStable Isotope LabelingStructureTechnologyTranslatingVendorVisualWorkanaloganalytical toolcommunity engagementcomputerized data processingdata integrationdesignexperienceimprovedinsightion mobilitymultiple omicstechnology developmenttoolultra high resolution
项目摘要
Project Summary – TR&D 3
The Resource overall has the goal of broadly impacting biomedical research by providing the abilities to: obtain
high quality proteomics data from much smaller samples, produce more quantitative and comprehensive
measurements, generate improved and more extensive information on low abundance components, distinguish
presently problematic peptide isomers, and enable the study of much larger sample sets than presently
practical by providing increases in measurement throughput. Advances under TR&Ds 1 and 2 in this renewal
will provide large improvements in the sensitivity, breadth, quality, and quantity (i.e. throughput) of proteome
data. The efforts of TR&D 3 will enable these capabilities through advanced algorithms for data processing and
the integration of multiple proteomics and other data sets to aid the extraction of biomedical insights. TR&D 3
will develop new algorithms for protein identification and quantification that are needed to effectively utilize
the unique capabilities of the SLIM ion mobility (IM)-MS platform developed in TR&D 2. Highly accurate and
very highly precise and reproducible collision cross section (CCS) values derived from the SLIM ultra-high
resolution IM measurements will provide more confident and sensitive identification of peptides/proteins. A
key aspect of our approach is the use of large sets of stable isotope labeled peptides for the calibration of SLIM
ultra-high resolution IM separations leading to more precise peptide collision cross section information. These
same stable isotope labeled peptide sets will also serve as calibrants to enable highly accurate quantification of
their unlabeled analogs as well as for broad quantification of all peptides and proteins at somewhat reduced
accuracy. Advances under TR&Ds 1 and 2 will also enable a broader measurement of post-translational
modifications, which we will use to infer networks and pathways active in the samples. We will continue to
develop our collaborative visual analytic tool in conjunction with these networks to facilitate exploration and
interpretation of the data. These efforts will build upon previous Resource developments and will be facilitated
by key technological developments under TR&D 2. In combination, these efforts will provide a basis for rapid
implementation and initial evaluation of new proteomics capabilities providing both larger and richer data sets
for challenging biomedical projects, as well as their effective dissemination to the research community.
项目总结- TR&D
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel H Payne其他文献
Samuel H Payne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel H Payne', 18)}}的其他基金
Diversity Supplement for Alyssa Nitz for GM147653
GM147653 的 Alyssa Nitz 多样性补充
- 批准号:
10798510 - 财政年份:2022
- 资助金额:
$ 31.76万 - 项目类别:
Enhanced Sensitivity and Quantitative Precision for Single Cell Proteomics
增强单细胞蛋白质组学的灵敏度和定量精度
- 批准号:
10710172 - 财政年份:2022
- 资助金额:
$ 31.76万 - 项目类别:
Bioinformatics, data integration, and knowledge extraction from high throughput proteomics for enabling biomedical applications
生物信息学、数据集成和从高通量蛋白质组学中提取知识,以实现生物医学应用
- 批准号:
10461820 - 财政年份:2003
- 资助金额:
$ 31.76万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.76万 - 项目类别:
Research Grant