Identifying genetic pathways and cellular sources for neural regeneration in adult animals
识别成年动物神经再生的遗传途径和细胞来源
基本信息
- 批准号:10221587
- 负责人:
- 金额:$ 3.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimalsBiological ModelsBiologyCRISPR/Cas technologyCellsDataDevelopmentDevelopmental BiologyDiseaseEmbryoEmbryonic DevelopmentFoundationsGene Transfer TechniquesGenesGeneticGoalsHeterogeneityHumanInjuryInstitutionInvertebratesKnowledgeLabelMediatingMicroscopyMissionModelingMolecularMolecular GeneticsNatural regenerationNatureNerve RegenerationNervous system structureNeurodegenerative DisordersNeuronsOrganismPathway interactionsPatternPlanariansPluripotent Stem CellsPopulationProcessPublic HealthRNA InterferenceRegenerative MedicineRegenerative researchResearchSOX4 geneSourceSpecific qualifier valueSystemTechniquesTestingTrainingTransgenic OrganismsUnited States National Institutes of HealthUniversitiesWorkadult stem cellbasecareercell typecomparativedisabilitygenome editingin silicoinsightmature animalnerve stem cellneuromechanismprogenitorreceptorregeneration modelregenerativerelating to nervous systemsingle-cell RNA sequencingskillsstem cell populationstem cellstranscription factor
项目摘要
Project Summary/Abstract
Adult animals capable of whole-body regeneration are tasked with faithfully replacing any missing cell type,
including the myriad of cell types within the nervous system. Most knowledge regarding the patterning and
specification of neuronal populations comes from work focusing on embryonic development; however, limited
work has been performed to identify mechanisms underlying the regeneration or re-specification of entire
nervous systems within adult animals. The overall objective of this project is to uncover the cellular and
molecular mechanisms that underlie neuronal cell specification, differentiation, and replacement within the
context of an adult animal, using the highly regenerative acoel research model, Hofstenia miamia. Hofstenia
has an organized nervous system composed of different neural cell types that it can regenerate fully because
of a population of pluripotent adult stem cells called ‘neoblasts’. Notably, Hofstenia is amenable to mechanistic
studies of regeneration and presents several advantages over more well-established invertebrate regeneration
models, including accessible embryos that have enabled CRISPR/Cas9-based genome editing and stable
transgenesis. This project will ask two major questions about nervous system regeneration within the adult
nervous system: 1) What are the molecular/genetic regulators of neural cell type diversity during regeneration?
2) What are the cellular sources and dynamics that underlie differentiation of neural populations during
regeneration? Single-cell RNAseq will identify candidate regulators of neural cell type diversity, focusing on
transcription factors and receptors, during regeneration. Our preliminary scRNAseq data allows us to
hypothesize sox4, vax1, and nkx2.4 homologs as important regulators of neural differentiation. Systemic RNAi
in combination with microscopy in adults will identify the molecular mechanisms governing neural cell type
identity during regeneration. In parallel, we plan to utilize a transgenic labeling technique to identify neural stem
cell populations, determining their dynamics and contributions to differentiated neural populations during
regeneration. These two questions allow us to test the hypothesis that a single neural stem cell population
subfunctionalizes to form progenitor subtypes within Hofstenia. Cell and molecular mechanisms discovered in
the regeneration of the adult nervous system in this work have the potential to inform human regenerative
medicine with regards to neurodegenerative disease. My goal for the F31 is to equip myself with the
computational, genetic, and theoretical skills necessary for a lifetime career in developmental biology to
uncover the intricacies associated with animal regeneration. The Department of Organismic and Evolutionary
Biology at Harvard University is a premier institution for this training.
项目总结/摘要
具有全身再生能力的成年动物的任务是忠实地替换任何缺失的细胞类型,
包括神经系统内的无数细胞类型。大部分关于图案的知识,
神经元群体的特化来自专注于胚胎发育的工作;然而,有限的
已经进行了工作,以确定再生或重新规范整个
成年动物的神经系统。该项目的总体目标是揭示细胞和
神经元细胞特化、分化和替换的分子机制,
成年动物的背景下,使用高度再生的acoel研究模型,Hofstenia miamia。霍夫斯特尼亚
有一个由不同类型的神经细胞组成的有组织的神经系统,它可以完全再生,
一群多能成体干细胞称为“新胚细胞”。值得注意的是,Hofstenia适合机械化
再生的研究,并提出了几个优势,更完善的无脊椎动物再生
模型,包括可获得的胚胎,这些胚胎能够进行基于CRISPR/Cas9的基因组编辑,
转基因这个项目将提出两个关于成人神经系统再生的主要问题
神经系统:1)再生过程中神经细胞类型多样性的分子/遗传调节因子是什么?
2)什么是细胞的来源和动力学的基础分化的神经群体,
再生?单细胞RNAseq将识别神经细胞类型多样性的候选调节因子,重点是
转录因子和受体,在再生过程中。我们初步的scRNAseq数据使我们能够
假设sox 4、vax 1和nkx 2.4同源物是神经分化的重要调节因子。系统性RNAi
结合成人显微镜检查,将确定控制神经细胞类型的分子机制,
再生过程中的身份。同时,我们计划利用转基因标记技术来鉴定神经干
细胞群,确定它们的动态和贡献分化的神经群体,
再生这两个问题使我们能够验证一个假设,即单个神经干细胞群
亚功能化以形成霍夫斯滕属内的祖细胞亚型。发现的细胞和分子机制
在这项工作中,成人神经系统的再生有可能告知人类再生
关于神经退行性疾病的药物。我对F31的目标是装备自己,
在发育生物学终身职业所需的计算,遗传和理论技能,
揭示动物再生的复杂性。器官与进化系
哈佛大学的生物学是这种培训的首要机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Edward Hulett其他文献
Ryan Edward Hulett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 3.12万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 3.12万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 3.12万 - 项目类别:
Training Grant














{{item.name}}会员




