Invisible Collaborators: Underrepresentation, Research Networks, and Outcomes of Biomedical Researchers
隐形合作者:代表性不足、研究网络和生物医学研究人员的成果
基本信息
- 批准号:10221744
- 负责人:
- 金额:$ 21.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AuthorshipCollaborationsDataDisadvantagedEnsureEthnic OriginEthnic groupFacultyFellowshipFundingGenderInstructionMentorsMentorshipOutcomePlayPoliciesPolicy MakerPositioning AttributePostdoctoral FellowPublicationsRaceResearchResearch PersonnelResearch Project GrantsRoleScienceScientistTimeTrainingUnderrepresented MinorityUnderrepresented PopulationsUnited States National Institutes of HealthWomanWorkethnic minority populationgraduate studentimprovedlarge scale datamemberracial and ethnicracial minority
项目摘要
This interdisciplinary project will greatly enhance our understanding of the scientific contributions of
women, members of racial and ethnic under represented minorities (URMs), and research staff and inform
science and scientific workforce policy regarding those groups. Our work is made possible through the
use of unique new data from the UMETRICS project and on scores on NIH applications.
The UMETRICS data allow us to identify all people employed on research projects, not just those who are
listed as authors on publications. With these powerful data, we will provide new perspectives on the
positions of women and URMs in the network of scientific collaborations. This is particularly important
because existing evidence indicates that women and members of underrepresented racial and ethnic
groups are disadvantaged in terms of the authorship credit they receive for their contributions to science.
Because our UMETRICS data make it possible to identify all people working on projects, we can study for
the first time the extent to which women and URMs are even included on publications controlling for the
role played and the amount of effort devoted to projects. Our analysis of staff is also timely as NIH has
repeatedly considered increasing support for staff scientists. If staff are less likely to appear as coauthors
on articles than faculty, postdocs, or perhaps graduate students, it becomes critically important for policy
to be able to find other ways to quantify their contribution to science.
There is also mixed evidence that women trainees perform better under the mentorship of women
mentors. In addition to coming to mixed conclusions, existing work on the benefits of a gender match
between trainees and mentors is descriptive rather than causal. We will use unique large-scale data on
scores on NIH fellowship applications to estimate the causal effect of a gender match on women trainees.
RELEVANCE (See instructions):
Policy makers seek to ensure that our best and brightest regardless of gender, race, and ethnicity are
represented in science. But, unfortunately, it is often hardest to quantify the relative contribution to
science of members of underrepresented groups and research staff. This project will use new data to
better quantify the credit received by women, underrepresented racial and ethnic minorities, and research
staff in science and provide policy-relevant guidance for improving their training and funding.
这个跨学科的项目将大大提高我们的科学贡献的理解,
妇女、代表性不足的种族和族裔少数群体成员以及研究人员,
关于这些群体的科学和科学劳动力政策。我们的工作是通过
使用来自UMETRICS项目的独特新数据和NIH应用程序的分数。
UMETRICS数据使我们能够识别所有受雇于研究项目的人,而不仅仅是那些
在出版物上被列为作者。有了这些强有力的数据,我们将提供新的视角,
妇女和统一资源管理机制在科学合作网络中的地位。这一点尤其重要
因为现有的证据表明,妇女和代表性不足的种族和民族的成员,
一些群体因其对科学的贡献而获得著作权方面的荣誉,处于不利地位。
由于我们的UMETRICS数据可以识别所有从事项目的人员,因此我们可以研究
这是第一次将妇女和统一登记机制列入控制人口的出版物,
所发挥的作用和投入项目的努力。我们对员工的分析也是及时的,因为NIH已经
一再考虑增加对科学家的支持。如果工作人员不太可能作为合著者出现,
而不是教师,博士后,或者研究生,这对政策变得至关重要
能够找到其他方法来量化他们对科学的贡献。
还有各种证据表明,在妇女指导下,女学员的表现更好
导师除了得出喜忧参半的结论外,现有的关于性别匹配的好处的工作
是描述性的,而不是因果关系。我们将使用独特的大规模数据,
美国国立卫生研究院奖学金申请的分数,以估计性别匹配对女性受训者的因果影响。
相关性(参见说明):
政策制定者寻求确保我们最优秀和最聪明的人,不分性别,种族和民族,
在科学中表现出来。但是,不幸的是,通常最难量化的是,
科学代表性不足的群体和研究人员的成员。该项目将使用新数据,
更好地量化妇女、代表性不足的种族和少数民族以及研究所获得的信贷
科学工作人员,并提供政策相关的指导,以改善他们的培训和资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason David Owen-Smith其他文献
Jason David Owen-Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason David Owen-Smith', 18)}}的其他基金
Invisible Collaborators: Underrepresentation, Research Networks, and Outcomes of Biomedical Researchers
隐形合作者:代表性不足、研究网络和生物医学研究人员的成果
- 批准号:
10450882 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
Invisible Collaborators: Underrepresentation, Research Networks, and Outcomes of Biomedical Researchers
隐形合作者:代表性不足、研究网络和生物医学研究人员的成果
- 批准号:
10646413 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
相似海外基金
RAPID International Type I: Collaborative Research: COVID Data Infrastructure Builders: Creating Resilient and Sustainable Research Collaborations
RAPID 国际 I 类:协作研究:新冠病毒数据基础设施建设者:创建有弹性和可持续的研究合作
- 批准号:
2109924 - 财政年份:2021
- 资助金额:
$ 21.15万 - 项目类别:
Standard Grant
RAPID International Type I: Collaborative Research: COVID Data Infrastructure Builders: Creating Resilient and Sustainable Research Collaborations
RAPID 国际 I 类:协作研究:新冠病毒数据基础设施建设者:创建有弹性和可持续的研究合作
- 批准号:
2109966 - 财政年份:2021
- 资助金额:
$ 21.15万 - 项目类别:
Standard Grant
RAPID International Type I: Collaborative Research: COVID Data Infrastructure Builders: Creating Resilient and Sustainable Research Collaborations
RAPID 国际 I 类:协作研究:新冠病毒数据基础设施建设者:创建有弹性和可持续的研究合作
- 批准号:
2109653 - 财政年份:2021
- 资助金额:
$ 21.15万 - 项目类别:
Standard Grant
Administrative Supplement to Support Collaborations to Improve AIML-Readiness of NIH-Supported Data for Parent Award SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
支持合作的行政补充,以提高 NIH 支持的家长奖数据的 AIML 就绪性 SCH:头部自适应放射治疗的个性化重新安排
- 批准号:
10594327 - 财政年份:2021
- 资助金额:
$ 21.15万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10621486 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10267191 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
Data CI Pilot: NCAR and NEON Cyberinfrastructure Collaborations to Enable Convergence Research Linking the Atmospheric and Biological Sciences
数据 CI 试点:NCAR 和 NEON 网络基础设施合作,实现连接大气和生物科学的融合研究
- 批准号:
2039932 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
Standard Grant
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10657966 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10396214 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10471230 - 财政年份:2020
- 资助金额:
$ 21.15万 - 项目类别:














{{item.name}}会员




