Improving predictive capacity of models for universal influenza vaccine development

提高通用流感疫苗开发模型的预测能力

基本信息

项目摘要

The need for improved and more universally protective influenza vaccines is well recognized. Central to efforts towards improvements is the development of animal models more predictive of the human response to immunization and/or infection. Indeed, this need has been highlighted by the NIAID Strategic Plan for a Universal Influenza Vaccine. While animal models may never be able to fully predict the human response, understanding their full strengths and weaknesses and identifying the optimal models for different purposes is a significant public health need and is the scientific premise behind our proposed objectives. These objectives, which are built upon our extensive use of influenza animal models, are to optimize animal modeling of immunologic imprinting, to improve vaccine efficacy testing, and to identify immune correlates of protection and boosting immune responses. Our overall goal is to provide superior preclinical models to support universal influenza vaccine development. We will achieve this goal through three complementary and interrelated specific aims, 1) optimal modeling of human serologic responses to repeat influenza antigen exposure in animal models; 2) improving the quantitative nature of the ferret influenza challenge model; and 3) defining serologic correlates of influenza virus induced clinical symptoms. Our ability to conduct these aims is supported through our participation in, and collaboration with, a recently NIAID-funded human infant cohort, the DIVINCI study. We will mirror the influenza antigen exposures of a selection of these infants in three animal models and compare immunologic data sets to identify which most accurately reflects the human response (Aim 1). This marriage of human and animal data sets and samples offers an innovative way forward and will provide a unique set of differentially primed animals with which to determine immune correlates of novel physiologic parameters of infection and immune responses (Aim 2) using original machine learning algorithms (Aim 3).
人们充分认识到需要改进和更普遍的保护性流感疫苗。努力改进的核心是开发更能预测人类对免疫和/或感染反应的动物模型。事实上,NIAID的通用流感疫苗战略计划强调了这一需要。虽然动物模型可能永远无法完全预测人类的反应,但了解它们的全部优点和缺点并确定用于不同目的的最佳模型是一项重要的公共卫生需求,也是我们提出目标的科学前提。这些目标建立在我们广泛使用流感动物模型的基础上,旨在优化免疫印记的动物模型,改善疫苗效力测试,并鉴定保护和增强免疫应答的免疫相关性。我们的总体目标是提供上级临床前模型,以支持通用流感疫苗的开发。我们将通过三个互补且相互关联的具体目标来实现这一目标,1)在动物模型中重复流感抗原暴露的人血清学应答的最佳建模; 2)改善雪貂流感攻击模型的定量性质;以及3)定义流感病毒诱导的临床症状的血清学相关性。我们能够实现这些目标,是通过我们参与和合作,最近NIAID资助的人类婴儿队列,DIVINCI研究。我们将在三种动物模型中反映这些婴儿的流感抗原暴露情况,并比较免疫学数据集,以确定哪种最准确地反映了人类反应(目标1)。人类和动物数据集和样本的这种结合提供了一种创新的前进方式,并将提供一组独特的差异致敏动物,使用原始机器学习算法(Aim 3)确定感染和免疫反应(Aim 2)的新生理参数的免疫相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD John WEBBY其他文献

RICHARD John WEBBY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD John WEBBY', 18)}}的其他基金

Improving predictive capacity of models for universal influenza vaccine development
提高通用流感疫苗开发模型的预测能力
  • 批准号:
    10672890
  • 财政年份:
    2020
  • 资助金额:
    $ 76.62万
  • 项目类别:
Improving predictive capacity of models for universal influenza vaccine development
提高通用流感疫苗开发模型的预测能力
  • 批准号:
    10439775
  • 财政年份:
    2020
  • 资助金额:
    $ 76.62万
  • 项目类别:
MECHANISMS REGULATING AVIAN INFLUENZA VIRUS INFECTIONS IN HUMANS
人类禽流感病毒感染的调节机制
  • 批准号:
    10094050
  • 财政年份:
    2017
  • 资助金额:
    $ 76.62万
  • 项目类别:
MECHANISMS REGULATING AVIAN INFLUENZA VIRUS INFECTIONS IN HUMANS
人类禽流感病毒感染的调节机制
  • 批准号:
    9244245
  • 财政年份:
    2017
  • 资助金额:
    $ 76.62万
  • 项目类别:
Therapeutic Monoclonal Antibodies to H5N1 Influenza
H5N1 流感治疗性单克隆抗体
  • 批准号:
    7134389
  • 财政年份:
    2006
  • 资助金额:
    $ 76.62万
  • 项目类别:
Therapeutic Monoclonal Antibodies to H5N1 Influenza
H5N1 流感治疗性单克隆抗体
  • 批准号:
    7261358
  • 财政年份:
    2006
  • 资助金额:
    $ 76.62万
  • 项目类别:
Therapeutic Monoclonal Antibodies to H5N1 Influenza
H5N1 流感治疗性单克隆抗体
  • 批准号:
    7666203
  • 财政年份:
    2006
  • 资助金额:
    $ 76.62万
  • 项目类别:
Therapeutic Monoclonal Antibodies to H5N1 Influenza
H5N1 流感治疗性单克隆抗体
  • 批准号:
    7900034
  • 财政年份:
    2006
  • 资助金额:
    $ 76.62万
  • 项目类别:
Therapeutic Monoclonal Antibodies to H5N1 Influenza
H5N1 流感治疗性单克隆抗体
  • 批准号:
    7478690
  • 财政年份:
    2006
  • 资助金额:
    $ 76.62万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 76.62万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了