Next-Generation Cardiovascular MRI powered by Artificial Intelligence
由人工智能驱动的下一代心血管 MRI
基本信息
- 批准号:10226541
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D MRIAccelerationAddressAdoptedAdoptionAdultAgreementArchitectureArtificial IntelligenceCardiacCardiovascular systemChildhoodCine Magnetic Resonance ImagingClassificationClinicalCommunity HospitalsComputer Vision SystemsComputer softwareDataDatabasesDigital Imaging and Communications in MedicineEchocardiographyGadoliniumGenerationsGoalsHourHumanImageImage AnalysisImage EnhancementInstitutionInterventionLearningMagnetic Resonance ImagingPatientsPatternPerformancePerfusionPhasePhysiciansProcessPrognosisProtocols documentationReadingReportingResourcesSamplingScanningSeriesSpeedTechnologyTestingTimeTrainingUnited States National Institutes of Healthbasecardiovascular imagingclinical practiceclinical translationcomputer scienceconvolutional neural networkcostdata spacedeep learningempoweredexperimental studyheart imaginghigh rewardhigh riskimage processingimage reconstructionimaging Segmentationimaging facilitiesinterestnetwork architectureneural networkneural network architecturenext generationnovelreconstructionresponserisk predictionroutine practicesignal processingsingle photon emission computed tomographysuccess
项目摘要
Project Summary/Abstract: Despite the accuracy and versatility of cardiovascular MRI, its footprint is only
1% among cardiac imaging tests (SPECT, echocardiography, CT, MRI) in the US. While there are several
factors such as referral patterns favoring SPECT and echocardiography among cardiologists that account for
low utilization, the two addressable obstacles that preclude widespread adoption are lengthy scan time
(imaging facility operational cost) and reading (physician cost). These obstacles must be addressed for
community hospitals with limited resources to adopt cardiovascular MRI into clinical routine practice.
While compressed sensing (CS), since its introduction into the MRI world in 2007, has led to highly-accelerated
cardiovascular MRI acquisitions, the subsequent image reconstruction remains too slow (> 5 min for 2D time
series, > 1 hour for 3D time series) for clinical translation (unmet need 1). Downstream, image analysis for
cardiovascular MRI is notoriously labor intensive (e.g. 30- to 60-min) and limited (“circles” at two cardiac
phases for cine MRI, whereas perfusion and late gadolinium-enhanced (LGE) images are evaluated visually),
for what is essentially a basic computer vision task (unmet need 2). In direct response, we will address these
two unmet needs and unlock the enormous potential of CMR using deep learning (DL).
DL applications have exploded since advancements in optimization and GPU hardware. While several recent
studies have applied neural networks such as convolutional neural networks (CNNs), U-Nets, and Generative
Adversarial Nets (GANs) for reconstruction and segmentation, no study has implemented an inline end-to-end
pipeline that receives raw k-space from the MRI scanner and delivers both reconstructed images and fully
processed images automatically with high speed (< 1 min). The objectives of this study are: a) developing a
network for image reconstruction with maximal acceleration (aim 1), (b) developing a network for image
processing tasks (aim 2), and c) developing an integrated, end-to-end network that does both (aim 3). By
developing an architecture that can simultaneously learn maximal acceleration, fine tune end-to-end
performance, and perform reconstruction/inference using feed-forward networks, we anticipate a disruptive
technology that will lead to a paradigm shift in cardiovascular MRI and increase its footprint in community
hospitals. This 2-year study is doable because of the requisite database of raw k-space (not derived from
DICOM) data (N = 617) and annotated cardiac MR images (N=3,021) from over 3,000 patients existing at our
institution. Success of this proposal will deliver a disruptive technology that has potential to cause a paradigm
shift in cardiovascular MRI and enable widespread adoption of cardiovascular MRI into clinical routine practice.
项目摘要/摘要:尽管心血管 MRI 具有准确性和多功能性,但其占地面积仅
在美国,心脏影像检查(SPECT、超声心动图、CT、MRI)中的这一比例为 1%。虽然有几个
心脏病专家中倾向于 SPECT 和超声心动图的转诊模式等因素
利用率低,阻碍广泛采用的两个可解决的障碍是扫描时间过长
(成像设施运营成本)和阅读(医生成本)。必须解决这些障碍
资源有限的社区医院无法将心血管 MRI 纳入临床常规实践。
而压缩感知 (CS) 自 2007 年引入 MRI 领域以来,已经带来了高度加速的
心血管 MRI 采集,随后的图像重建仍然太慢(2D 时间 > 5 分钟)
系列,> 1 小时(3D 时间序列)用于临床翻译(未满足的需求 1)。下游,图像分析
心血管 MRI 众所周知是劳动密集型(例如 30 至 60 分钟)且有限(两个心脏的“圆圈”)
电影 MRI 的阶段,而灌注和晚期钆增强 (LGE) 图像则通过视觉评估),
本质上是一项基本的计算机视觉任务(未满足的需求 2)。作为直接回应,我们将解决这些问题
两个未满足的需求,并利用深度学习 (DL) 释放 CMR 的巨大潜力。
随着优化和 GPU 硬件的进步,深度学习应用程序呈爆炸式增长。虽然最近有几个
研究已经应用了神经网络,例如卷积神经网络(CNN)、U-Net 和生成网络
用于重建和分割的对抗网络(GAN),没有研究实现内联端到端
从 MRI 扫描仪接收原始 k 空间并提供重建图像和完整图像的管道
高速自动处理图像(< 1 分钟)。本研究的目标是:a) 开发
以最大加速度进行图像重建的网络(目标 1),(b) 开发图像网络
处理任务(目标 2),以及 c) 开发一个可同时完成这两项任务的集成端到端网络(目标 3)。经过
开发一种可以同时学习最大加速度、端到端微调的架构
性能,并使用前馈网络执行重建/推理,我们预计会出现破坏性的
技术将导致心血管 MRI 范式转变并增加其在社区中的足迹
医院。这项为期 2 年的研究是可行的,因为需要原始 k 空间数据库(不是源自
DICOM)数据(N = 617)和带注释的心脏 MR 图像(N = 3,021)来自我们医院现有的 3,000 多名患者
机构。该提案的成功将带来一种颠覆性技术,有可能成为一种范例
心血管 MRI 的转变,并使心血管 MRI 广泛应用于临床常规实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Strides Cossairt其他文献
Oliver Strides Cossairt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Strides Cossairt', 18)}}的其他基金
Revealing neural circuits underlying zebrafish behavior using mesoscopic light field microscopy
使用介观光场显微镜揭示斑马鱼行为背后的神经回路
- 批准号:
10300922 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
相似海外基金
Disease Analysis Based on Respiratory Displacement Estimation to All-field of Lung from Thoracic 4D-MRI and Fusion with CT
基于胸部 4D-MRI 肺部全视野呼吸位移估计并与 CT 融合的疾病分析
- 批准号:
22K18181 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying risk factors for the post replacement-related complications following aortic valve replacement in patients with severe aortic valve stenosis with 4D-MRI blood flow dynamics imaging.
通过 4D-MRI 血流动力学成像识别严重主动脉瓣狭窄患者主动脉瓣置换术后相关并发症的危险因素。
- 批准号:
19K17510 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
9980333 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10204956 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10653082 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10413106 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Numerical Prediction and Measurement of Infrarenal Abdominal Aortic Aneurysm Blood Flow using 4D MRI
使用 4D MRI 进行肾下腹主动脉瘤血流的数值预测和测量
- 批准号:
511305-2017 - 财政年份:2017
- 资助金额:
$ 18.98万 - 项目类别:
University Undergraduate Student Research Awards
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
8943325 - 财政年份:2015
- 资助金额:
$ 18.98万 - 项目类别:
Developement of 4D MRI microscopy for monitoring growth process of rhizome axillary bud
开发用于监测根茎腋芽生长过程的4D MRI显微镜
- 批准号:
15K04719 - 财政年份:2015
- 资助金额:
$ 18.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
9319686 - 财政年份:2015
- 资助金额:
$ 18.98万 - 项目类别:














{{item.name}}会员




