Optical neural networks for ultra-fast, low-latency machine intelligence

用于超快、低延迟机器智能的光神经网络

基本信息

  • 批准号:
    10043476
  • 负责人:
  • 金额:
    $ 120.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Machine intelligence, powered by artificial neural networks, is developing rapidly and entering all aspects of our lives. A novel paradigm in this field is offered by optics, where photons, rather than electrons, play the role of information carriers and computational agents. Optical neural networks promise to enhance both the power efficiency and speed of neural networks by a factor of 1,000-100,000\. Switching from electronic to optical neural networks will make machine intelligence much more accessible and environmentally friendly, thereby delivering direct benefits to society. More productive and energy efficient AI systems will democratise machine learning, making it more of value to socially-vulnerable groups.OxONN in collaboration with the University of Oxford are creating the foundations for the next-generation of advanced optical neural networks. This consortium possesses world-leading expertise in optical computing and has developed game-changing technologies in optical-computing methodologies and hardware. In this project, the consortium will focus on developing the optical implementation of a primary component of any neural network - the optical matrix-vector multiplier, which will be superior to competing products in terms of productivity and scalability, and become OxONN's first MVP. In addition, a conceptually novel deep optics neural network system for computer vision will be developed. This system will allow a neural network to "see" and interpret objects directly, bypassing the need for converting an image into an electronic form. Such a system will have ultra-low latency and find applications in autonomous vehicles, remote sensing and intelligent robotics.This highly innovative project aims to put the UK at the forefront of all-optical computing technology and position our country as the next global technology leader in AI systems for a plethora of applications.
以人工神经网络为动力的机器智能正在迅速发展,并进入我们生活的方方面面。光学提供了这一领域的一个新范式,其中光子而不是电子扮演着信息载体和计算代理的角色。光学神经网络有望将神经网络的功率效率和速度提高1000 - 100000倍。从电子神经网络转向光学神经网络将使机器智能更容易获得和环境友好,从而为社会带来直接利益。更高效、更节能的人工智能系统将使机器学习民主化,使其对社会弱势群体更具价值。OxONN与牛津大学合作,正在为下一代先进的光学神经网络奠定基础。该联盟拥有世界领先的光学计算专业知识,并在光学计算方法和硬件方面开发了改变游戏规则的技术。在该项目中,该联盟将专注于开发任何神经网络的主要组件的光学实现-光学矩阵向量乘法器,该乘法器在生产力和可扩展性方面将优于竞争产品,并成为OxONN的第一个MVP。此外,还将开发一种概念新颖的用于计算机视觉的深度光学神经网络系统。该系统将允许神经网络直接“看到”和解释对象,绕过将图像转换为电子形式的需要。该系统将具有超低延迟,并可应用于自动驾驶汽车、遥感和智能机器人等领域。这一高度创新的项目旨在使英国走在全光计算技术的前沿,并将英国定位为人工智能系统的下一个全球技术领导者,以实现大量应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship

相似国自然基金

脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
  • 批准号:
    82370933
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
生理/病理应激差异化调控肝再生的“蓝斑—中缝”神经环路机制
  • 批准号:
    82371517
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
弓状核介导慢性疼痛引起动机下降的神经环路机制及rTMS干预研究
  • 批准号:
    82371536
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
听觉刺激特异性调控情绪的神经环路机制研究
  • 批准号:
    82371516
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TAG1/APP信号通路调控的miRNA及其在神经前体细胞增殖和分化中的作用机制
  • 批准号:
    31171313
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Reconfigurable Diffractive Optical Neural Networks with Phase Change Material based Photonic Device
具有基于相变材料的光子器件的可重构衍射光学神经网络
  • 批准号:
    2316627
  • 财政年份:
    2023
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Standard Grant
Quantum Optical Neural Networks for Quench Prevention
用于预防猝灭的量子光神经网络
  • 批准号:
    10073463
  • 财政年份:
    2023
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Feasibility Studies
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
  • 批准号:
    2321404
  • 财政年份:
    2023
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Continuing Grant
CAREER: Intersubband neurons for ultrafast optical neural networks
职业:超快光学神经网络的子带间神经元
  • 批准号:
    2349259
  • 财政年份:
    2023
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: TeTON: A Testbed and a Toolkit for Expediting Investigation of and Accelerating Advancements in All-Optical Neural Networks
合作研究:CNS 核心:媒介:TeTON:加速全光神经网络研究和加速进步的测试平台和工具包
  • 批准号:
    2211989
  • 财政年份:
    2022
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: TeTON: A Testbed and a Toolkit for Expediting Investigation of and Accelerating Advancements in All-Optical Neural Networks
合作研究:CNS 核心:媒介:TeTON:加速全光神经网络研究和加速进步的测试平台和工具包
  • 批准号:
    2211990
  • 财政年份:
    2022
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Continuing Grant
Novel photonic devices for optical neural networks
用于光神经网络的新型光子器件
  • 批准号:
    2597128
  • 财政年份:
    2021
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
CAREER: Intersubband neurons for ultrafast optical neural networks
职业:超快光学神经网络的子带间神经元
  • 批准号:
    2046772
  • 财政年份:
    2021
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Continuing Grant
All optical neural networks
全光学神经网络
  • 批准号:
    2589868
  • 财政年份:
    2020
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
Novel devices for optical convolutional neural networks
用于光学卷积神经网络的新型设备
  • 批准号:
    2343282
  • 财政年份:
    2019
  • 资助金额:
    $ 120.58万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了