Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy

通过旁观者辅助免疫疗法利用癌症代谢和药物流出

基本信息

  • 批准号:
    10227793
  • 负责人:
  • 金额:
    $ 34.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-05-15
  • 项目状态:
    已结题

项目摘要

ABSTRACT. Two hallmarks of drug resistance in cancers are irregular metabolism and drug efflux. In multidrug- resistant cancers, both of these processes disarm the efficacy of chemotherapeutics, ultimately resulting in de- creased chemotherapeutic efficacy and increased mortality. Several strategies in development attempt to miti- gate the effects of drug resistance by modulating specific metabolic pathways or disrupting drug efflux. Specifi- cally, these strategies include inhibitors, interference RNAs, and nanomedicine approaches. However, a funda- mental challenge to these strategies is the off-target toxicity that arises from disrupting metabolism or drug efflux mediated by P-glycoprotein (P-gp), as these mechanisms are also critical to a number of healthy processes throughout the body. To address this, our long-term objective is to develop a therapeutic strategy that exploits both of these mechanisms of drug resistance in tandem to generate a therapeutic anti-cancer immune repsonse. Our central hypothesis is that rationally designed prodrugs can co-opt cancer cell metabolism and drug efflux to cause an anti-cancer immune response via a mechanism of action we have termed Bystander Assisted Immu- noTherapy (BAIT). In BAIT, an enzyme-directed prodrug is first metabolized to an immunotherapeutic metabolite by the irregular metabolism of multidrug-resistant cancer cells. Next, the immunotherapeutic is transported, via P-gp-mediated drug efflux, to the extracellular space. This results in the activation of bystander immune cells in local proximity, which initiate an anti-cancer immune response. Because BAIT requires tandem metabolism and drug efflux, we anticipate a uniquely enhanced specificity for multidrug-resistant phenotypes that exhibit both of these processes. To develop rationally designed BAIT prodrugs, we first identify small-molecule immunothera- peutics that are susceptible to drug efflux. In concurrent studies, we also develop synthetic enzyme-directing groups that modulate the activity of immunotherapeutics and are specifically removed by enzymes expressed in the irregular metabolism of multidrug-resistant cancer cells. Combining these two research areas, we generate enzyme-directed BAIT prodrugs that confer immunogenicity to multidrug-resistant cancers. In-vitro, this is con- firmed in co-cultures of immune cells and cancer cell lines that express these metabolic enzymes and P-gp. In- vivo, we use a murine model system for prostate cancer (TRAMP-C2 allograft) to demonstrate that BAIT pro- drugs result in lowered toxicity, decreased tumor volume, and increased progression-free survival, relative to conventional immunotherapeutics in immunocompetent mice. Taken together, we envision that this research will establish BAIT as a therapeutic strategy that is enhanced, rather than disarmed, by drug resistance. It is our long-term vision that this strategy could be widely applicable to multidrug-resistant cancers that evade the action of conventional therapies through altered metabolisms and drug efflux.
摘要。癌症耐药的两个特征是代谢不规律和药物外排。在多

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rock Mancini其他文献

Rock Mancini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rock Mancini', 18)}}的其他基金

Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy
通过旁观者辅助免疫疗法利用癌症代谢和药物流出
  • 批准号:
    10655088
  • 财政年份:
    2022
  • 资助金额:
    $ 34.34万
  • 项目类别:
Exploiting Cancer Metabolism and Drug Efflux with Bystander-Assisted Immunotherapy
通过旁观者辅助免疫疗法利用癌症代谢和药物流出
  • 批准号:
    10688097
  • 财政年份:
    2022
  • 资助金额:
    $ 34.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了