Nanotechnology in tissue engineering for autologous cardiac valve development
用于自体心脏瓣膜发育的组织工程纳米技术
基本信息
- 批准号:10227992
- 负责人:
- 金额:$ 24.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAnticoagulationAortaAreaAutologousAwardBiocompatible MaterialsBiologicalBiologyBiomedical EngineeringBioprosthesis deviceBiostatistics CoreCardiac Catheterization ProceduresCardiologyCardiovascular DiseasesCardiovascular PhysiologyCardiovascular Surgical ProceduresCardiovascular systemCell AdhesionCellsCellular biologyClinicClinicalCollaborationsCollagen FibrilCommunication ResearchComplexCore FacilityDepartment chairDepositionDevelopmentDoctor of MedicineDoctor of PhilosophyElastinElectrospinningEndotheliumEngineeringExtracellular MatrixExtramural ActivitiesFDA approvedFacultyFamily suidaeFundingFutureGoalsHeart ValvesHeart failureHistologyImmune responseImplantIn VitroInflammatory ResponseInterventionLaboratoriesMechanicsMedicineMentorsMicroscopyMinnesotaModelingMoldsMolecularMorphologyNanotechnologyNatural regenerationNatureOperative Surgical ProceduresOutcomePathologyPatient CarePatient EducationPatientsPerformancePhysiciansPolymersPositioning AttributePostdoctoral FellowPropertyProsthesisRadialRegenerative MedicineRegenerative responseResearchResearch PersonnelResearch SupportResourcesSchoolsScienceScientistSeriesServicesSheepStentsStructureSystemTechnologyTestingThickThrombusTissue EngineeringTissuesTrainingTranslational ResearchTubular formationUniversitiesWashingtonWorkadverse outcomeanimal facilitybasebiomaterial developmentcalcificationcardiac tissue engineeringcareercareer developmentclinical centerclinical translationclinically relevantcollegedesigneducation researchengineering designexperienceheart valve replacementimplantationimprovedimproved outcomein vitro Modelin vitro testingin vivoinnovationinterstitialmaterials sciencemechanical propertiesnanofibernext generationnovelnovel strategiespatient populationpericardial sacpolycaprolactonepost-doctoral trainingpressureprofessorprototyperesearch facilityscaffoldsheep modelskillssubcutaneoustenure tracktranslational research program
项目摘要
Project Summary/Abstract
The goals of the proposed research are to develop functional autologous trilayered heart valve leaflets with
collagen fibril orientations of a native leaflet using trilayered nanofibrous substrates and to extend this
approach in developing fully autologous heart valves with native heart valve functionality. The proposed work
will develop a technology to fabricate trilayered nanofibrous substrates from a FDA approved polymer
mimicking trilayered structure and orientations of collagen fibrils of native heart valve leaflets. The proposed
work will then apply leaflet-shaped trilayered nanofibrous substrates to develop non-contractile autologous
valve leaflets mimicking the structure of native leaflets by in-body tissue engineering. The leaflet constructs will
be tested in-vitro to verify their morphological, structural, and functional properties and contractility. The
proposed work will then develop heart valve-shaped nanofibrous substrates containing leaflet-shaped
trilayered nanofibrous substrates and circumferentially oriented tubular nanofibrous substrates to engineer
autologous non-contractile heart valves with comparable properties of native heart valves through in-body
tissue engineering. The engineered valves will be tested for their morphological, structural, mechanical and
functional properties in-vitro. The engineered autologous valves will also be tested for clinically-relevant
outcomes including function, thrombus formation, and calcification in an ovine implantation model. These
valves are expected to be an important step in the development toward clinical translation.
The proposed research focuses the candidate's research in a novel direction to provide training on new
skills required to begin the transition to independence. The candidate holds a Ph.D. in Materials Science and
Engineering from the University of Washington and is currently a research associate at Mayo Clinic. His Ph.D.
thesis work involved development of biomaterials for tissue engineering and regenerative medicine. This led to
his postdoctoral work that involves design and development of nanofibrous biomaterials for biological cardiac
valve development. His postdoctoral work also includes development of decellularized heart valve, pericardium
tissue-based heart valve and stent graft, and their functionality testing in an ovine/porcine implantation model.
The candidate's immediate career goal is to transition from mentored to independent research by
completing his postdoctoral training and beginning a tenure track faculty position at a major research
university. This will require focusing his current projects into a novel research direction while also receiving
additional training needed to successfully complete the current and future projects in cardiovascular tissue
engineering as an independent investigator. The K99/R00 mechanism is the ideal means of achieving this
goal. The candidate's long-term career objective is to establish an independent and extramurally funded
translational research program within the field of cardiovascular tissue engineering that will meaningfully
improve patient care and train the next generation of scientists, physicians, and engineers.
Research career development during the award will include working with an interdisciplinary mentoring team
of clinicians, scientists, and engineers. The candidate's primary mentor, Dr. Amir Lerman, M.D., is the chair of
Cardiovascular Research at Mayo Clinic and provides expertise in cardiovascular biology and clinical
are Dr. Leigh Griffith, Ph.D., who is a professor of cardiovascular
diseases at Mayo Clinic and provides expertise in biomaterials and in-vivo recipient inflammatory, immune and
regenerative responses in cardiovascular area, Dr. John Stulak, M.D., is a professor of cardiovascular surgery
at Mayo Clinic and provides expertise in surgical treatment of advanced heart failure,
cardiology. The candidate's co-mentors
and Dr. Robert
Tranquillo, Ph.D., chair of the Department of Biomedical Engineering at the University of Minnesota, provides
expertise in biomedical engineering and cardiovascular tissue engineering. Working with his mentors, the
candidate will train in
scaffold and mold design, cardiovascular physiology, cell biology and pathology, all
aspects of in-body tissue engineering in ovine model, functionality tests of tissue-engineered valves and ovine
model analysis of novel cardiac valves.
The candidate will also train in other essential skills including
communication of research findings, mentoring, and project management. Finally, educational opportunities
such graduate coursework in
molecular cell biology
, cardiovascular physiology as well as various research and
clinical seminar series, will round out the training experience. Mayo Clinic offers a variety of educational and
support services through the Graduate School, College of Medicine, Office of Research Education, and Center
for Clinical and Translation Science that will facilitate the necessary training.
Mayo Clinic is committed to supporting translational research and recently established the Center for
Regenerative Medicine as a strategic initiative. World experts in a variety of fields are available for
collaboration with the common goal to improve patient care. Mayo also offers a variety of research resources
and facilities including core facilities such as the Microscopy and Cell Analysis Core, the Biostatistics Core, the
Histology Core, and the Materials and Structural Testing Core. The Division of Engineering features a full
machine shop, electrical shop, and glassblowing shop to support research requests for engineering design and
development. Mayo also has several animal facilities including the Cardiovascular Innovation Laboratory,
which features a full cardiac catheterization laboratory dedicated to animal studies.
项目总结/文摘
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet.
- DOI:10.1007/s00441-020-03241-6
- 发表时间:2020-11
- 期刊:
- 影响因子:3.6
- 作者:Jana S;Lerman A
- 通讯作者:Lerman A
Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics.
- DOI:10.1021/acsabm.1c00768
- 发表时间:2021-11
- 期刊:
- 影响因子:4.7
- 作者:S. Jana;David Morse;A. Lerman
- 通讯作者:S. Jana;David Morse;A. Lerman
In vivo tissue engineering of a trilayered leaflet-shaped tissue construct.
- DOI:10.2217/rme-2019-0078
- 发表时间:2020-01
- 期刊:
- 影响因子:2.7
- 作者:S. Jana;A. Lerman
- 通讯作者:S. Jana;A. Lerman
Anisotropicity and flexibility in trilayered microfibrous substrates promote heart valve leaflet tissue engineering.
- DOI:10.1088/1748-605x/ac94ae
- 发表时间:2022-10-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fibrous heart valve leaflet substrate with native-mimicked morphology.
具有模仿天然形态的纤维心脏瓣膜小叶基质。
- DOI:10.1016/j.apmt.2021.101112
- 发表时间:2021
- 期刊:
- 影响因子:8.3
- 作者:Jana,Soumen;Franchi,Federico;Lerman,Amir
- 通讯作者:Lerman,Amir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soumen Jana其他文献
Soumen Jana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soumen Jana', 18)}}的其他基金
Nanotechnology in tissue engineering for autologous cardiac valve development
用于自体心脏瓣膜发育的组织工程纳米技术
- 批准号:
9381682 - 财政年份:2017
- 资助金额:
$ 24.83万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 24.83万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 24.83万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 24.83万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 24.83万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)