TOPIC #411 - PHASE I SBIR CONTRACT - DE-IDENTIFICATION SOFTWARE TOOLS FOR CANCER IMAGING RESEARCH

话题

基本信息

  • 批准号:
    10274086
  • 负责人:
  • 金额:
    $ 38.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-16 至 2021-06-15
  • 项目状态:
    已结题

项目摘要

Developing artificial intelligence technology for medical imaging applications requires training models on large and diverse datasets. Currently, aggregation of large data repositories, including radiology and pathology images, is limited by concerns around patient privacy. In order to successfully share medical images, an institution must be able to quickly and accurately de-identify large numbers of images in batches. This process is currently manual and time-consuming. We propose a pipeline to remove PHI from both radiology DICOM images and pathology whole slide images by leveraging machine learning, natural language processing, and compartmentalized workflow techniques to significantly reduce the human intervention needed to anonymize medical images. In addition to examining header data in the images, we will use optical character recognition and computer vision algorithms to detect text in any location or orientation in the image, then automatically record and subsequently purge these regions. These techniques will be configured to work on a variety of image types (CT, MRI, radiograph, etc) and cover multiple OEM vendors for both radiology and pathology images. This phase I statement of work will construct the software tools, methods, and datasets necessary to facilitate a phase II where the complex algorithms needed for autonomous deidentification will be developed. This phase II processing will be referred to throughout this document as the workflow.
开发用于医学成像应用的人工智能技术需要在大型且多样化的数据集上训练模型。 目前,包括放射学和病理学图像在内的大型数据存储库的聚合受到对患者隐私的担忧的限制。 为了成功共享医学图像,机构必须能够快速、准确地批量对大量图像进行去标识化。 目前此过程是手动且耗时的。 我们提出了一个管道,通过利用机器学习、自然语言处理和分区工作流程技术,从放射学 DICOM 图像和病理学整个幻灯片图像中删除 PHI,以显着减少匿名医学图像所需的人为干预。 除了检查图像中的标题数据之外,我们还将使用光学字符识别和计算机视觉算法来检测图像中任何位置或方向的文本,然后自动记录并随后清除这些区域。这些技术将被配置为适用于各种图像类型(CT、MRI、射线照片等),并涵盖放射学和病理学图像的多个 OEM 供应商。 第一阶段工作说明书将构建促进第二阶段所需的软件工具、方法和数据集,其中将开发自主去识别所需的复杂算法。 此第二阶段处理将在本文档中称为工作流程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL BUNTING其他文献

PAUL BUNTING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
  • 批准号:
    10091110
  • 财政年份:
    2024
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Collaborative R&D
Social Identities and Artificial Intelligence: Exploring the role of social identities in complex systems which include humans and machines.
社会身份和人工智能:探索社会身份在包括人类和机器在内的复杂系统中的作用。
  • 批准号:
    2894256
  • 财政年份:
    2023
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Studentship
Artificial Intelligence and Machine Learning hyper-personalisation innovation to make complex software onboarding accessible to all
人工智能和机器学习超个性化创新,使所有人都能轻松入门复杂的软件
  • 批准号:
    10035271
  • 财政年份:
    2022
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Collaborative R&D
Distributed Artificial Intelligence Disaster Management System for Complex Disasters
复杂灾害的分布式人工智能灾害管理系统
  • 批准号:
    20K11952
  • 财政年份:
    2020
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
  • 批准号:
    516382-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Postdoctoral Fellowships
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
  • 批准号:
    516382-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Postdoctoral Fellowships
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
  • 批准号:
    516382-2018
  • 财政年份:
    2017
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Postdoctoral Fellowships
The application of artificial intelligence to a complex energy application
人工智能在复杂能源应用中的应用
  • 批准号:
    752946
  • 财政年份:
    2015
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Vouchers
Automatic Derivation of Nonlinear State Equations by Using Artificial Intelligence in Inverse Problem of Complex Systems
复杂系统反问题中人工智能自动推导非线性状态方程
  • 批准号:
    13680449
  • 财政年份:
    2001
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring the Complex Systems as a Base of Artificial Intelligence
探索复杂系统作为人工智能的基础
  • 批准号:
    10680361
  • 财政年份:
    1998
  • 资助金额:
    $ 38.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了