Integrative network modeling of bulk and single-cell sequencing data to characterize multi-scale cell architecture
对批量和单细胞测序数据进行集成网络建模,以表征多尺度细胞架构
基本信息
- 批准号:10276091
- 负责人:
- 金额:$ 41.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureBiological ModelsBiologyCellsChemicalsClinicClinicalComplexDataData SetDatabasesDiseaseDisease modelEtiologyGenesGeneticGenetic DiseasesGenomicsMeasuresModalityModelingMolecularNaturePathway AnalysisPhylogenyPopulationPublic DomainsResolutionSamplingSignal PathwaySignal TransductionStreamSystemTechnologyTestingTherapeuticTissuesbasecohortcostgene interactiongenetic signaturegenomic signaturehuman diseaseinterestmolecular modelingmultimodalitynetwork modelsnovelnovel therapeutic interventionsingle cell sequencing
项目摘要
Abstract
Single cell sequencing technology enabled us to identify the aberrant molecular alterations in diseased cells
presenting altered signaling pathways and emergence of disease-associated cell populations, leading to multi-
scale cell architectures in disease tissue micro-environment. However, drawbacks such as low sequencing
depth per cell, expensive costs and loss of cross-cell signaling information have hindered its broader
applicability to large-scale cohorts. On the contrary, clinically well-defined, multi-modal and high-depth bulk-
based sequencing data are abundantly available in public domain, and can be utilized to assemble robust
molecular models of the genetic diseases, and infer cell population abundances in the samples. Especially,
network biology approaches have been effective for integrating large-scale and diverse biomedical datasets in complex
human diseases, and dissect the disease mechanisms and novel therapeutic strategies. Thus, a systems approach to
synergistically utilize these complementary aspects of bulk and single-cell sequencing data is urgently needed to
construct the robust molecular models of disease mechanisms while addressing the multi-scale nature of cell
architectures in diseased tissues. Firstly, we will systematically investigate multi-scale cell architectures by
developing a novel unsupervised cell clustering approach, single-cell recursive multi-scale clustering via local
embedding (scRECIEM). Within scRECIEM, a novel cell-cell network construction algorithm will be developed
by embedding each cell with its nearest neighboring cells on topological sphere, and yield computation
complexity that linearly scales with the number of cells when parallelized. This will be accompanied by a top-
down divisive clustering approach that adaptively utilizes informative features at each split, which is guided by
network compactness measure, υ(α). These will identify a hierarchy of cell clusters captured at different
resolutions. Secondly, we will develop integrative multi-scale network analysis (iMUSNET) framework to
construct data-driven and mechanistic network models of disease etiology by utilizing the context-matched bulk
samples. Within iMUSNET, the context-matched pairs of bulk and single-cell cohorts will be systematically
collected, and we will construct multi-scale gene interaction networks capturing diverse co-expressed modules
at different resolutions. These gene modules will be tested for enrichments with a compendium of clinico-
genomic gene signatures curated within the bulk cohort. Key driver analysis will systematically look for
potential up-stream regulators of the clinic-genomic signatures by leveraging the network model topology.
Further, we will infer abundances of the context-matched single-cell clusters with high accuracy by utilizing the
scRECITE-inferred cell phylogeny, and these will inform relevant disease associated cell populations in the
bulk cohort. Overall, iMUSNET will generate a number testable hypotheses as potential regulators and
subnetworks underlying the disease of interest.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Won-min Song其他文献
Won-min Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 41.49万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 41.49万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 41.49万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant