Peripheral Artery Disease: Long-term Survival & Outcomes Study (PEARLS)
外周动脉疾病:长期生存
基本信息
- 批准号:10275610
- 负责人:
- 金额:$ 17.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAmputationAnkleArteriesBig DataBig Data MethodsBiometryBlood PressureBlood VesselsBlood flowCardiologyCardiovascular systemCaringCessation of lifeChronic CareChronic DiseaseClinicalClinical DataClinical Practice GuidelineClinical TreatmentClinical TrialsCodeCoronary ArteriosclerosisDataData ElementDecision MakingDiabetes MellitusDiagnosisDisease ManagementDisease OutcomeElectronic Health RecordEpidemiologyEthnic OriginEventFaceFundingFutureGlycosylated hemoglobin AGuidelinesHealth systemHospitalsIncidenceIncomeInformaticsIntegrated Health Care SystemsInternational Classification of Disease CodesKidney FailureKnowledgeLaboratoriesLegLife StyleLimb structureLongitudinal cohortLow incomeMachine LearningMeasuresMedicalMethodologyMethodsModelingMyocardial InfarctionNatural Language ProcessingNewly DiagnosedOperative Surgical ProceduresOutcomeOutcome StudyPain in lower limbPatient-Focused OutcomesPatientsPatternPeripheral arterial diseasePharmaceutical PreparationsPredictive ValuePrimary Health CareQuality of CareRaceReportingResearchRiskRisk FactorsScienceScientific Advances and AccomplishmentsSeveritiesSiteSpecificityStrokeSymptomsTestingToesTreatment FactorUnited StatesVariantVeteransVeterans Health AdministrationWorkadverse outcomebasecare deliverycare outcomescohortcomorbiditycostcritical limb Ischemiadisabilitydiscrete datadisease diagnosisdisparity reductioneffective therapyethnic minority populationexperienceglycemic controlhigh riskhigh risk populationimprovedindexinginnovationinsightlimb amputationmortalitymortality riskmultilevel analysisnovelnovel strategiespatient subsetsprogramsstroke eventsurvival outcometime usetool
项目摘要
Project Summary/Abstract
Background: Peripheral artery disease (PAD) is a common and highly morbid condition. Nearly 25% of patients
die within 3 years of diagnosis, likely due to a high incidence of cardiovascular (CV) events: myocardial infarction
(MI) or stroke. A significantly larger proportion experience disability due to leg pain, poor mobility and amputation.
The cost of PAD-related hospital care alone exceeds $21 billion. However, research regarding long-term survival,
CV, and limb outcomes in PAD and the impact of existing treatments remain limited in large part due to the poor
accuracy of PAD diagnosis codes. Our team has developed a novel approach using natural language processing
(NLP) to identify PAD patients with a high degree of accuracy within the Veterans Health Administration (VHA).
Significance: The Peripheral Artery Disease: Long-term Survival & Outcomes Study (PEARLS) study will
advance scientific knowledge for PAD in several ways. We will use our NLP tool to assemble one of the largest
cohorts of PAD in the world and follow them long-term to assess the trajectory of survival and clinical outcomes,
evaluate utilization of recommended treatments (medications, risk factor control and revascularization) and the
association of above treatments with the above outcomes. Collectively, our work will address important gaps in
PAD research and yield insights regarding strategies to improve care delivery in this high-risk population.
Innovation: The use of an informatics-based method to assemble a cohort of newly diagnosed PAD patients in
a large integrated health system is highly innovative. We believe that our approach for cohort identification will
be transformational and promote big data analytics for research, improving care delivery, and future clinical trials.
Specific Aims: A1. Develop a national cohort of Veterans with newly diagnosed PAD using a novel NLP
algorithm. A2. Examine patterns of medical and invasive management and determine patient- and facility-level
correlates. A3. Determine the impact of medical and invasive management of PAD on long-term outcomes.
Methodology: We will implement our NLP algorithm to identify patients with new PAD diagnosis in VHA during
2015-2020 and obtain data on clinical and treatment related variables. We will follow our cohort longitudinally for
mortality, CV events (MI, stroke) and limb events (amputation). We will examine utilization of PAD treatments
and risk factor control, identify patient-level and hospital-level predictors of treatment using multi-level models.
We will use discrete survival models to evaluate the association of PAD treatments with long-term outcomes.
Implementation/Next Steps: Key deliverables will include a) an understanding of which patient groups are at
greatest risk for mortality and adverse outcomes; (b) determining the relative impact of PAD treatments on long-
term outcomes which can be useful for decision-making and c) an assessment of site-level variation in treatment
patterns. We envision that our findings will help us develop comprehensive disease management program to
improve quality of care and reduce disparities in use of effective treatments.
项目总结/摘要
背景:外周动脉疾病(PAD)是一种常见且高度病态的疾病。近25%的患者
在诊断后3年内死亡,可能是由于心血管(CV)事件的高发生率:心肌梗死
(MI)或者中风因腿部疼痛、行动不便和截肢而残疾的比例要高得多。
仅与PAD相关的医院护理费用就超过210亿美元。然而,关于长期生存的研究,
PAD的CV和肢体结局以及现有治疗的影响仍然有限,这在很大程度上是由于
PAD诊断代码的准确性。我们的团队开发了一种使用自然语言处理的新方法
(NLP)在退伍军人健康管理局(VHA)内以高准确度识别PAD患者。
意义:外周动脉疾病:长期生存和结局研究(PEARLS)研究将
以多种方式推进PAD的科学知识。我们将使用我们的NLP工具来组装一个最大的
在世界范围内的PAD队列,并长期跟踪他们,以评估生存和临床结局的轨迹,
评价推荐治疗(药物、风险因素控制和血运重建)的利用率,
上述治疗与上述结局的相关性。总的来说,我们的工作将解决以下方面的重要差距:
PAD的研究和产生的见解有关的战略,以改善在这一高风险人群的护理提供。
创新:使用基于信息学的方法,将一组新诊断的PAD患者聚集在一起,
一个大规模的综合保健系统具有很强的创新性。我们相信,我们的队列识别方法将
变革和促进大数据分析用于研究,改善医疗服务和未来的临床试验。
具体目标:A1。使用新型NLP开发新诊断PAD的退伍军人的全国队列
算法A2.检查医疗和侵入性管理的模式,并确定患者和设施级别
相互关联A3.确定PAD的医学和侵入性管理对长期结局的影响。
方法学:我们将实施我们的NLP算法,以在VHA中识别新的PAD诊断患者,
2015-2020年,并获得临床和治疗相关变量的数据。我们将纵向跟踪我们的队列,
死亡率、CV事件(MI、卒中)和肢体事件(截肢)。我们将检查PAD治疗的使用情况
和风险因素控制,使用多水平模型识别患者水平和医院水平的治疗预测因子。
我们将使用离散生存模型来评估PAD治疗与长期结局的相关性。
实施/后续步骤:关键可交付成果将包括a)了解哪些患者群体处于
死亡率和不良结局的最大风险;(B)确定PAD治疗对长期
对决策有用的长期结果,以及c)对治疗中站点水平差异的评估
模式.我们设想,我们的研究结果将有助于我们制定全面的疾病管理计划,
提高护理质量,减少有效治疗使用方面的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saket Girotra其他文献
Saket Girotra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saket Girotra', 18)}}的其他基金
Peripheral Artery Disease: Long-term Survival & Outcomes Study (PEARLS)
外周动脉疾病:长期生存
- 批准号:
10734991 - 财政年份:2023
- 资助金额:
$ 17.21万 - 项目类别:
Peripheral Artery Disease: Long-term Survival & Outcomes Study (PEARLS)
外周动脉疾病:长期生存
- 批准号:
10744868 - 财政年份:2021
- 资助金额:
$ 17.21万 - 项目类别:
Post-Resuscitation Care and Survival After In-hospital Cardiac Arrest
院内心脏骤停后的复苏后护理和生存
- 批准号:
8679133 - 财政年份:2014
- 资助金额:
$ 17.21万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 17.21万 - 项目类别:
Continuing Grant