High Energy and Spatial Resolution Multi-Isotope SPECT Imaging of Targeted Alpha-Emitters and their Daughters
目标α发射体及其子体的高能量和空间分辨率多同位素 SPECT 成像
基本信息
- 批准号:10275637
- 负责人:
- 金额:$ 75.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAlpha Particle EmitterAnimalsAreaAutomobile DrivingCaliberCanadaCancer PatientCardiologyCharacteristicsClinicalClinical ResearchCommunicable DiseasesCommunitiesComplexConsentCoupledDCNUDaughterDevelopmentDevicesDiagnosisDiscipline of Nuclear MedicineDistributional ActivityDoseEnsureEvaluationFosteringGamma CamerasGamma RaysGenerationsGrantGrowthHalf-LifeImageImaging technologyIndustryInstitutional Review BoardsInterdisciplinary StudyInvestigationIsotopesKnowledgeLeadLesionManufacturer NameMedical ImagingMedicineMetastatic Prostate CancerMethodsModalityNeurologyNormal tissue morphologyOncologyOrganParentsPatientsPerformancePhotonsPhysicsPropertyProtocols documentationRadiationRadiation exposureRadioisotopesRadiopharmaceuticalsRadiumResearchResearch PersonnelResolutionRheumatologyRoentgen RaysRoleSchemeSystemTechniquesTechnologyThickTimeToxic effectUniversitiesbasebonecancer cellcancer therapyclinical imagingclinical translationcompound eyedesigndetection platformdetectordosimetryexperienceimage reconstructionimaging modalityimprovedinstrumentationkidney cortexnext generationprecision medicinepreclinical studyquantitative imagingreconstructionroutine imagingsingle photon emission computed tomographystandard of caresuccesstargeted imagingtheranosticstreatment planningtumoruptake
项目摘要
Single photon emission computed tomography (SPECT) is the most versatile nuclear medicine imaging modality.
In principle, it can image any radionuclide whose decay leads to photon emissions. There are more than 200
photon emitters with physics properties (half-life, photon energy and yield) appropriate for medical imaging using
SPECT. In large part due to instrumentation constraints, only 12 or so are used in medicine. We propose to
develop a SPECT system that will vastly expand the number of radionuclides that could be candidates for
medical imaging. Our CZT-based system will double the range of imageable photon energies; improve the
photon energy resolution and also the spatial resolution more than two-fold (1.5% vs 10% at 140 keV and 4 to 7
vs 10 to 15 mm respectively). The sensitivity will be increased more than 10-fold. Current SPECT imaging
technology does not meet the clinical demands of recent and potentially transformative advances in
radiopharmaceutical therapy, theranostics and precision medicine. These clinical advances require imaging that
is rigorously quantitative, has a high spatial resolution and can simultaneously image more than one radionuclide.
These capabilities must be offered at a fraction of current imaging times. We have chosen design specifications
for the device to meet the highly demanding imaging needs of radiopharmaceutical therapy with alpha-particle
emitters (αRPT). Alpha-emitters decay via a complex scheme that includes multiple daughters; the agents are
incredibly potent such that treatment is effective at sub GBq administered activity levels. Dosimetry and,
therefore quantitative accuracy at high spatial resolution is essential. We will build and characterize the “alpha-
SPECT” camera via the following specific aims: 1. Develop a large area 3-D CZT imaging-spectrometer that is
capable of providing an unprecedented energy resolution; this detector platform will be the basic building block
for alpha-SPECT. 2. Combine the CZT-based detection system with a synthetic compound-eye gamma camera
design to achieve a compact detection system with ultrahigh resolution over a wide field of view in a 45 cm
diameter ring. 3. Develop quantitative multi-isotope reconstruction methods that are tailored to the high
performance capability of Alpha-SPECT. 4. Evaluate system performance in phantoms and in large animal
preclinical studies. 5. Use the system for lesion and normal tissue dosimetry in metastatic prostate cancer
patients treated with Radium-223 (Xofigo). The proposal is founded on a partnership of unparalleled
instrumentation development capability (Dr. Meng), coupled with cutting-edge capability in implementing
advanced algorithms for multi-dimensional image generation (Drs. Frey and Du) that will be applied to the
dosimetry demands (Dr. Sgouros) of a new and promising treatment that delivers highly potent radiation to
disseminated cancer cells. Beyond the specific clinical scenario that is driving the proposed application, the
imaging instrumentation technology that will be implemented is a significant first step to building imaging
instrumentation that will serve much broader clinical needs in oncology and also in cardiology and neurology.
单光子发射计算机断层扫描(SPECT)是最通用的核医学成像方式。
原则上,它可以成像任何衰变导致光子发射的放射性核素。有200多
具有适用于医学成像的物理特性(半衰期、光子能量和产率)的光子发射器,
SPECT。在很大程度上由于仪器的限制,只有12个左右用于医学。我们建议
开发一个SPECT系统,这将大大增加可能成为候选者的放射性核素的数量。
医学成像我们的基于CZT的系统将使可成像光子能量的范围增加一倍;
光子能量分辨率和空间分辨率超过两倍(1.5%对10%,在140 keV和4至7
vs分别为10至15 mm)。灵敏度将提高10倍以上。当前SPECT成像
技术不符合最近和潜在的变革性进展的临床需求,
放射性药物治疗、治疗诊断学和精确医学。这些临床进展需要成像,
严格定量,具有高空间分辨率,并可同时对一种以上放射性核素成像。
这些功能必须在当前成像时间的一小部分提供。我们选择了设计规格
对于该装置来说,满足使用α粒子的放射性药物治疗的高要求的成像需求
发射体(αRPT)。α-发射体通过一个复杂的方案衰变,该方案包括多个子体;
令人难以置信的效力,使得治疗在低于GBq的施用活性水平下有效。剂量测定和,
因此,在高空间分辨率下的定量准确性是至关重要的。我们将建立并描述“阿尔法-
SPECT”相机通过以下具体目的:1.研制了大面积三维CZT成像光谱仪,
能够提供前所未有的能量分辨率;这个探测器平台将是基本的构建块
阿尔法SPECT。2.将基于CZT的检测系统与合成复眼伽马相机联合收割机相结合
设计实现了一个紧凑的检测系统,在45 cm的宽视场内具有100%的分辨率
直径环。3.开发定量多同位素重建方法,
Alpha-SPECT的性能。4.在体模和大型动物中评价系统性能
临床前研究。5.将该系统用于转移性前列腺癌的病变和正常组织剂量测定
用镭-223(Xofigo)治疗的患者。该提案是建立在一个无与伦比的伙伴关系,
仪器开发能力(孟博士),加上尖端的能力,在实施
用于多维图像生成的高级算法(Frey和Du博士),将应用于
剂量学要求(斯古罗斯博士)一种新的和有前途的治疗,提供高度有效的辐射,
扩散的癌细胞除了推动拟议应用的特定临床场景外,
将要实施的成像仪器技术是建立成像系统的重要的第一步
这将为肿瘤学以及心脏病学和神经病学提供更广泛的临床需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Du其他文献
Yong Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Du', 18)}}的其他基金
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
- 批准号:
10713710 - 财政年份:2023
- 资助金额:
$ 75.55万 - 项目类别:
High Energy and Spatial Resolution Multi-Isotope SPECT Imaging of Targeted Alpha-Emitters and their Daughters
目标α发射体及其子体的高能量和空间分辨率多同位素 SPECT 成像
- 批准号:
10470322 - 财政年份:2021
- 资助金额:
$ 75.55万 - 项目类别:
Hyperspectral Single Photon Imaging of Targeted Alpha-Emitters
目标阿尔法发射器的高光谱单光子成像
- 批准号:
10436389 - 财政年份:2021
- 资助金额:
$ 75.55万 - 项目类别:
Hyperspectral Single Photon Imaging of Targeted Alpha-Emitters
目标阿尔法发射器的高光谱单光子成像
- 批准号:
10633193 - 财政年份:2021
- 资助金额:
$ 75.55万 - 项目类别:
High Energy and Spatial Resolution Multi-Isotope SPECT Imaging of Targeted Alpha-Emitters and their Daughters
目标α发射体及其子体的高能量和空间分辨率多同位素 SPECT 成像
- 批准号:
10703387 - 财政年份:2021
- 资助金额:
$ 75.55万 - 项目类别:
Hyperspectral Single Photon Imaging of Targeted Alpha-Emitters
目标阿尔法发射器的高光谱单光子成像
- 批准号:
10311159 - 财政年份:2021
- 资助金额:
$ 75.55万 - 项目类别:
Multi-Modality Quantitative Imaging for Evaluation of Response to Cancer Therapy
用于评估癌症治疗反应的多模态定量成像
- 批准号:
10437852 - 财政年份:2011
- 资助金额:
$ 75.55万 - 项目类别:
Multi-Modality Quantitative Imaging for Evaluation of Response to Cancer Therapy
用于评估癌症治疗反应的多模态定量成像
- 批准号:
10208790 - 财政年份:2011
- 资助金额:
$ 75.55万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 75.55万 - 项目类别:
Continuing Grant














{{item.name}}会员




