An integrative, data-driven, and computational approach to uncovering dynamic mechanisms of early viral infection
一种揭示早期病毒感染动态机制的综合、数据驱动和计算方法
基本信息
- 批准号:10276969
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnimal ModelAtlasesBiologicalBiological ModelsBiological ProcessCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunicable DiseasesCommunitiesComplexComputer AnalysisComputing MethodologiesCouplingDataData AnalysesData CollectionDiseaseDisease OutcomeEnvironmentFamilyFutureGenesGuidelinesHumanImmune responseIn VitroInfectionLearningLogicMachine LearningMethodsModalityOrganismOrganoidsPhasePhysiologicalPredispositionProcessRegulator GenesResearchResourcesSevere Acute Respiratory SyndromeSystemTechnologyTherapeuticTherapeutic InterventionTissuesTrainingVirusVirus Diseasesbiological systemscausal variantcombinatorialcomputerized toolsdata integrationdesigngene interactionin vivoinnovationinsightlarge datasetsmachine learning algorithmmachine learning methodmouse modelnovelnovel strategiespathogenpredictive modelingsingle cell analysissingle cell technologytargeted treatment
项目摘要
Project Summary
Cutting-edge technologies are generating large datasets across biological processes, including those following
viral infection and host responses. However, lack of computational tools that can extract meaningful insights,
and lack of ability to integrate information across different model systems and data modalities, are roadblocks to
deriving biological and mechanistic understanding of these processes. The recent rise of devastating viruses
including SARS family viruses reveals that a deeper, basic mechanistic understanding of viral infection is still
lacking. Specifically, new insights into early viral infection (asymptomatic replication phase) and early-responding
genes that govern infection and disease outcome are critical for understanding progression of infection and host
responses. During my postdoctoral research, I developed several widely-used algorithms for biomedical machine
learning and single-cell data analysis, and applied these to a broad range of biological systems, including
infectious disease. Here, I propose to develop a completely new approach that is founded in cross-modal
computational analysis and can be applied to dynamic processes across living systems. In this proposal, the
method will be trained upon and applied to uncovering virus infection dynamics. By leveraging single-cell
technologies, combinatorial CRISPR perturbation, and advanced machine learning, this new approach will learn
the gene regulatory logic that governs infection. By spanning model systems, I will extract information that can
be derived more cleanly from in-vitro systems, such as early infection timepoints. Through cross-integration of
these data with in-vivo data from mouse models we will bring the precision questions that can be asked in human
organoids together with the physiological environment of animal models, powering our ability to derive relevant
insights into gene networks underlying a complex, dynamic process. I will build a single-cell atlas of virus infection
and train a machine learning algorithm to obtain a predictive model of infection dynamics. By also integrating
data from single-cell combinatorial CRISPR perturbation, I will infer causal gene networks as well as synergistic
gene interactions that govern infection dynamics. This combination of advanced machine learning methods,
large-scale single-cell analysis, and gene perturbation data will allow discovery of the drivers of infection,
signatures of both susceptibility and protection, and gene networks that can ultimately be targeted for therapeutic
intervention. Synergistic gene interactions will open up future paths to potentially more effective, specific, and
even combinatorial therapies. The innovative coupling of computational methods and deep data collection to
extract information, particularly during early infection phases, has the potential to fundamentally change our
understanding of viral infections, as well as provide a framework that can be applied to a broad range of biological
processes and diseases to obtain deep mechanistic understanding.
项目摘要
尖端技术正在生成跨生物过程的大型数据集,包括以下过程
病毒感染和宿主反应。然而,由于缺乏能够提取有意义见解的计算工具,
以及缺乏跨不同模型系统和数据模态集成信息的能力,是
从生物学和机械学的角度理解这些过程。最近出现的毁灭性病毒
包括SARS家族病毒的研究表明,对病毒感染的更深层次的、基本的机制理解仍然是一个问题。
缺乏具体而言,对早期病毒感染(无症状复制期)和早期应答的新见解
控制感染和疾病结果的基因对于理解感染和宿主的进展至关重要。
应答在我的博士后研究期间,我开发了几种广泛使用的生物医学机器算法
学习和单细胞数据分析,并将其应用于广泛的生物系统,包括
传染病在这里,我建议开发一种全新的方法,建立在跨模态
计算分析,并可应用于整个生命系统的动态过程。在本提案中,
方法将被训练并应用于揭示病毒感染动态。通过利用单细胞
技术,组合CRISPR扰动和先进的机器学习,这种新方法将学习
控制感染的基因调控逻辑通过跨越模型系统,我将提取信息,
更干净地从体外系统中获得,例如早期感染时间点。通过交叉整合,
这些数据与来自小鼠模型的体内数据一起,我们将带来可以在人类中提出的精确性问题。
类器官与动物模型的生理环境一起,使我们能够获得相关的
深入了解基因网络背后的复杂动态过程。我会建立一个病毒感染的单细胞图谱
并训练机器学习算法以获得感染动态的预测模型。通过整合
根据单细胞组合CRISPR扰动的数据,我将推断因果基因网络以及协同基因网络。
控制感染动力学的基因相互作用。这种先进的机器学习方法的结合,
大规模的单细胞分析和基因扰动数据将允许发现感染的驱动因素,
敏感性和保护性的特征,以及最终可以靶向治疗的基因网络。
干预协同基因相互作用将开辟未来的道路,潜在的更有效,具体,
甚至是组合疗法计算方法和深度数据收集的创新结合,
提取信息,特别是在感染早期阶段,有可能从根本上改变我们的生活。
了解病毒感染,以及提供一个框架,可以应用于广泛的生物学
过程和疾病,以获得深入的机械理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David van Dijk其他文献
David van Dijk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David van Dijk', 18)}}的其他基金
An integrative, data-driven, and computational approach to uncovering dynamic mechanisms of early viral infection
一种揭示早期病毒感染动态机制的综合、数据驱动和计算方法
- 批准号:
10468210 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
An integrative, data-driven, and computational approach to uncovering dynamic mechanisms of early viral infection
一种揭示早期病毒感染动态机制的综合、数据驱动和计算方法
- 批准号:
10698179 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists