Defining DNA resection and protein localization changes that occur during DSB repair

定义 DSB 修复过程中发生的 DNA 切除和蛋白质定位变化

基本信息

项目摘要

DNA double strand break (DSB) repair pathways resolve DNA lesions that arise during cellular metabolism or as the by-product of cell damage. Human DSB repair pathways fall into two distinct categories: end joining (EJ) pathways that rejoin the DSB molecule, and homology directed repair (HDR) pathways that use a template molecule to repair the DSB molecule. The factors that cells use to decide between EJ and HDR repair pathways remain incompletely defined. Many studies have shown that the cell cycle regulates DSB pathway choice, yet cultures arrested at points in the cell cycle that favor HDR still repair the majority of DSBs using EJ. The long-term goal of the research in my lab is to comprehensively define factors that bias DSB repair in sufficient detail that we can predict DSB repair outcomes based on the initial conditions inside a cell. Pursuit of this goal will improve our understanding of DNA repair and related processes, enable new generations of gene editing reagents with greatly increased efficacy, and suggest new strategies to diagnose and treat human DNA repair pathologies, including cancer and aging. Over the next five years, we will develop a holistic model for DSB repair that describes DNA repair events occurring on the DSB and template molecules. Our goals in generating this model are to define the irreversible commitment step between EJ/HDR and to understand if cells sense their capacity to perform HDR before they pass commitment. These are important challenges for the cell, because inappropriate HDR can cause cell death or genomic instability. We hypothesize that cells have the heretofore unmeasured ability to develop DSB repair complexes in parallel, and that parallel maturation of DSB repair complexes plays a role both in the EJ/HDR commitment and as a checkpoint for these repair pathways. Parallel development of EJ and HDR complexes either on the DSB molecule or split between the DSB and template molecule would allow cells to simultaneously develop different types of repair before committing to one or the other. The ability to generate mature repair complexes prior to commitment would make DNA repair substantially less risky. Our practical approach is to develop genomic and proteomic techniques that allow us to measure DSB repair intermediates with unprecedented temporal and spatial resolution. We will use these techniques to define how protein complexes associate with chromatin over time and, crucially, the strandedness of DNA bound to DSB repair proteins. Measuring this latter parameter will allow us to determine when events occur in relation to the EJ/HDR decision and thus understand when and how this decision is made. We also explore mechanisms of communication between multiple DSB repair complexes assembled in parallel onto chromatin. Parallel events are especially informative because they indicate a dynamic system in which cells simultaneously explore multiple DSB repair pathways, thereby preserving choice until repair is nearly complete. For example, events on the template molecule may act as a checkpoint for events on the DSB molecule, or vice versa. This work will enable new tools that leverage our understanding of DSB repair to influence gene editing outcomes and to improve therapeutic workflows. We also anticipate that our work will open new fields of inquiry, for example defining how DSB repair complexes assembled interact with each other and with cell-wide signaling mechanisms.
DNA双链断裂(DSB)修复途径解决了细胞过程中出现的DNA损伤

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Richardson其他文献

Chris Richardson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Richardson', 18)}}的其他基金

Defining DNA resection and protein localization changes that occur during DSB repair
定义 DSB 修复过程中发生的 DNA 切除和蛋白质定位变化
  • 批准号:
    10468176
  • 财政年份:
    2021
  • 资助金额:
    $ 35.74万
  • 项目类别:
Defining DNA resection and protein localization changes that occur during DSB repair
定义 DSB 修复过程中发生的 DNA 切除和蛋白质定位变化
  • 批准号:
    10640202
  • 财政年份:
    2021
  • 资助金额:
    $ 35.74万
  • 项目类别:
Defining DNA resection and protein localization changes that occur during DSB repair
定义 DSB 修复过程中发生的 DNA 切除和蛋白质定位变化
  • 批准号:
    10826403
  • 财政年份:
    2021
  • 资助金额:
    $ 35.74万
  • 项目类别:

相似海外基金

Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
  • 批准号:
    2789227
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
  • 批准号:
    18H05272
  • 财政年份:
    2018
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
  • 批准号:
    42116-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
  • 批准号:
    42116-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
  • 批准号:
    479764-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
  • 批准号:
    42116-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
  • 批准号:
    476672-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
  • 批准号:
    42116-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
  • 批准号:
    463193-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
  • 批准号:
    42116-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 35.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了