Cell membrane disruption and recovery for intracellular delivery
细胞膜破坏和细胞内递送的恢复
基本信息
- 批准号:10275502
- 负责人:
- 金额:$ 36.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:BiologicalBiological Response Modifier TherapyBiologyBiomedical ResearchCell TherapyCell membraneCellsColoradoCommunitiesComplexDevelopmentDevicesDoseDrug Delivery SystemsEngineeringGenesGleanGoalsIndustrializationInjuryInterdisciplinary StudyLeadMedicalMedicineMembraneMethodsMicrofluidicsMicroinjectionsMolecularPermeabilityPharmaceutical PreparationsPhysicsPlayPropertyProteinsRecoveryRegenerative MedicineResearchRoleSurfaceTechniquesTechnologyToxic effectUniversitiesbasebiological researchcell behaviorcell typecostexperimental studyfrontierinsightmicrofluidic technologynanoengineeringnew technologynext generationnovelnucleic acid deliveryrepairedresponsesubmicron
项目摘要
PROJECT ABSTRACT
Intracellular delivery plays an essential role in biological research and therapeutic applications, however, efficient
intracellular delivery of exogenous compounds and macromolecular cargo remains a long-standing challenge.
The complex mechanisms of established methods and their often unpredictable impact on cell behaviour have
dramatically limited the scope of biological experiments and reduced efficacy of potentially promising cell therapy
concepts. Membrane disruption-based approaches have emerged as key strategies for rapid, direct and
universal intracellular delivery because they are less dependent on cargo properties and cell types, being able
to deliver almost any submicron material dispersed in solution. The ability to rapidly switch membrane-perturbing
effects on and off provides an additional level of control, enabling temporal manipulation and rapid, almost
instantaneous delivery. However, key challenges of membrane disruption strategies have been: 1) inconsistent
level of plasma membrane injury (which would lead to low viability and efficiency); 2) poor throughput or
scalability (e.g. microinjection); and 3) inadequate understanding of plasma membrane disruption and recovery
response. The PI's research group at University of Colorado Boulder centers on interdisciplinary research at the
frontiers of Biology, Medicine, Physics, and Micro/Nano Engineering. The main research thrust in the PI's group
is to develop new technologies to quantitatively understand cell membrane disruption and recovery, and explore
its application for next generation precise intracellular drug delivery. The goals for the next five years are to i)
develop a novel microfluidic platform, including NanoEngineered Surface Technology and Acoustofluidic devices,
that can precisely generate uniform and homogenous disruptions at cell membrane with controllable number and
size of the pores, to quantitatively understand cell membrane disruption and recovery dynamics at molecular,
cellular, proteiomic and high throughput level; ii) demonstrate a precise intracellular drug delivery system with
controllable dose, minimum toxicity, maximum efficiency, and high throughput, providing insight for or promoting
the next generation intracellular drug delivery. So far, biologists have not applied the fundamental insights
gleaned from membrane disruption and repair studies toward engineering cell permeability. The proposed
research grogram will bridge the scientific gap between these two disparate fields: the engineering of intracellular
delivery approaches; and the cellular mechanobiology of plasma membrane disruption and repair response. The
biomedical research community would benefit greatly from a more mechanistic and transparent understanding
of intracellular delivery, both to further the development of more robust techniques and to realize key medical
and industrial applications.
1
项目摘要
细胞内给药在生物研究和治疗应用中起着至关重要的作用,然而,高效
外源化合物和大分子货物的细胞内输送仍然是一个长期的挑战。
已建立的方法的复杂机制及其对细胞行为的往往不可预测的影响
极大地限制了生物实验的范围,降低了潜在的有希望的细胞疗法的疗效。
概念。基于膜破裂的方法已经成为快速、直接和
通用的细胞内递送,因为它们对货物属性和细胞类型的依赖较少,能够
提供几乎任何分散在溶液中的亚微米材料。快速切换膜扰动的能力
开和关的效果提供了额外的控制级别,使时间操作和快速,几乎
即刻交付。然而,膜破坏策略的主要挑战是:1)不一致
质膜损伤程度(这将导致低生存能力和低效率);2)产量低或
可伸缩性(例如显微注射);以及3)对质膜破坏和恢复的认识不足
回应。科罗拉多大学博尔德分校的PI研究小组在
生物学、医学、物理学和微/纳米工程的前沿。派小组的主要研究重点
是开发新的技术来定量了解细胞膜的破坏和恢复,并探索
它在下一代细胞内精确给药方面的应用。未来五年的目标是:i)
开发一种新型微流控平台,包括纳米工程表面技术和声流控设备,
它可以精确地在细胞膜上产生均匀和均匀的破坏,数量和数量可控
孔的大小,为了在分子水平上定量地了解细胞膜的破裂和恢复动力学,
细胞、蛋白质组和高通量水平;ii)展示精确的细胞内药物输送系统
剂量可控,毒性最小,效率最高,吞吐量高,提供洞察或促进
下一代细胞内药物输送。到目前为止,生物学家还没有应用这些基本的见解。
从膜破坏和修复研究中收集到的对工程细胞渗透性的研究。建议数
研究程序将弥合这两个不同领域之间的科学鸿沟:细胞内工程
传递途径;质膜破坏和修复反应的细胞机械生物学。这个
生物医学研究界将从更机械化和更透明的理解中受益匪浅
细胞内递送,以促进更强大的技术的发展和实现关键的医疗
和工业应用。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyun Ding其他文献
Xiaoyun Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyun Ding', 18)}}的其他基金
Cell membrane disruption and recovery for intracellular delivery
细胞膜破坏和细胞内递送的恢复
- 批准号:
10432103 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:
Cell membrane disruption and recovery for intracellular delivery
细胞膜破坏和细胞内递送的恢复
- 批准号:
10605276 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:














{{item.name}}会员




