A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
基本信息
- 批准号:10280305
- 负责人:
- 金额:$ 45.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsAngiographyAortaBehaviorBiomechanicsCaliberCessation of lifeCharacteristicsClassificationClinicalClinical ManagementClinical PathwaysComputer ModelsComputer Vision SystemsDataData SetDevelopmentDimensionsDiseaseDissectionElasticityElementsEquilibriumEvaluationEvolutionFailureFoundationsGeometryGoalsGrowthImageInjuryInterventionLinkMapsMeasuresMechanicsMedicalMethodsMissionModelingModernizationOperating RoomsOperative Surgical ProceduresOutcomePathway interactionsPatient SelectionPatient imagingPatientsPatternPhysiologicalPrincipal Component AnalysisProbabilityProcessPublic HealthResearchRiskRoleScanningSelection CriteriaShapesStressSurgeonSystemTechniquesTestingTimeUnited States National Institutes of HealthValidationWalkingWorkX-Ray Computed Tomographybasebiomechanical modelblood pressure variabilitycardiovascular healthclinically relevantdensitydifferential geometrygeometric structurehigh riskimprovedindexingindividual patientinnovationmortalitynovelpatient populationpreservationrisk stratificationsimulationsurgical risktool
项目摘要
Project Summary/Abstract:
The natural evolution of aortic dissection is notoriously unpredictable under current methods of evaluation and
management. There is an urgent need to more completely elucidate the biomechanical stability of type B aortic
dissections and identify signatures in the imaging data allowing for optimal patient classification based on aortic
fragility. The long-term goal is the development and validation of image-based analysis algorithms to classify
aortic stability and allow a personalized risk stratification for a given patient’s aortic geometry providing the basis
for optimizing clinical management. The overall objective of this proposal is to utilize modern approaches in
differential geometry, continuum mechanics, and computer vision to discover and characterize high-risk
geometric structures hidden within computed tomography angiography (CTA) data of fragile aortas. The central
hypothesis of this application is the existence of a fundamental link between aortic shape and aortic stability as
it relates to the risk of aortic dissection and fragility. The rationale for this work is development of an easily
translatable geometry and mechanics-based algorithm to predict dissection stability and intervention timing by
discovering a richer and more nuanced mapping of aortic shapes hidden in existing patient imaging data. The
central hypothesis will be tested by pursuing three specific aims: 1) develop a modern geometric classification
for aortic shapes, 2) develop a computational model that provides the mechanism underpinning the shape
evolution of aortic dissections, and 3) develop a modern successor to the traditional ‘maximum diameter’
measure of aortic dissections that integrates geometric, finite element, and physiologic factors. Utilizing a large
pre-identified CTA data set of normal and dissected aortas at various stages of disease and intervention, aim 1
will use tools from computer vision to reduce aortic shape to distributions of shape index and curvedness. Aim 2
will utilize advanced morphoelastic finite element growth models to discover the biomechanical mechanism
underpinning aortic shape changes in aortic dissections and validate these models on patient specific geometries
over clinically relevant time periods. These novel shape and mechanical stability classifiers will be used in both
linear and non-linear dimensionality reduction methods to define aortic shape sub-spaces for different clinical
scenarios in aim 3. This proposal is innovative as it challenges the status quo of evaluation and treatment by
deploying novel measures and techniques that analyze clinically relevant aortic geometry and the evolution of
aortic shape. Every patient is taken to the operating room under the full intent of having a positive clinical
outcome. The research outlined is significant because it is expected to provide surgeons and patients a more
discriminative framework with which to make better informed management decisions concerning type B aortic
dissections and ultimately optimize outcomes.
项目概要/摘要:
众所周知,在目前的评估方法下,主动脉夹层的自然演变是不可预测的,
管理迫切需要更全面地阐明B型主动脉的生物力学稳定性
解剖和识别成像数据中的签名,允许基于主动脉
脆弱长期目标是开发和验证基于图像的分析算法,
主动脉稳定性,并允许对给定患者的主动脉几何形状进行个性化风险分层,
优化临床管理。本提案的总体目标是利用现代方法,
微分几何、连续介质力学和计算机视觉来发现和表征高风险
隐藏在脆弱动脉瘤的计算机断层扫描血管造影(CTA)数据中的几何结构。中央
本申请的假设是在主动脉形状和主动脉稳定性之间存在基本联系,
它与主动脉夹层和脆弱性的风险有关。这项工作的基本原理是开发一个简单的
可平移的基于几何和力学的算法,用于预测夹层稳定性和介入时机,
发现隐藏在现有患者成像数据中的主动脉形状的更丰富和更细微的映射。的
中心假设将通过追求三个具体目标来检验:1)发展现代几何分类
对于主动脉形状,2)开发一个计算模型,提供支撑形状的机制
主动脉夹层的演变,以及3)开发传统“最大直径”的现代继承者
测量主动脉夹层,整合几何、有限元和生理因素。利用大
在疾病和干预的不同阶段,预先确定的正常和解剖动脉CTA数据集,目的1
将使用计算机视觉工具将主动脉形状简化为形状指数和弯曲度的分布。目的2
将利用先进的形态弹性有限元生长模型来发现生物力学机制
支持主动脉夹层中的主动脉形状变化,并在患者特定几何形状上验证这些模型
在临床相关的时间段内。这些新的形状和机械稳定性分类器将用于这两个
线性和非线性降维方法来定义不同临床应用的主动脉形状子空间
目标3中的情景。这一建议具有创新性,因为它通过以下方式对评价和治疗的现状提出了挑战:
采用新的措施和技术,分析临床相关的主动脉几何形状和演变,
主动脉形状每一个病人被带到手术室的全部目的是有一个积极的临床
结果。概述的研究意义重大,因为它有望为外科医生和患者提供更多的
判别框架,以便更好地做出有关B型主动脉的知情管理决策
解剖并最终优化结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luka Pocivavsek其他文献
Luka Pocivavsek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luka Pocivavsek', 18)}}的其他基金
A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
- 批准号:
10670102 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
- 批准号:
10441529 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Research Grant