Personalized Rejection Risk Assessment in Cardiac Transplantation
心脏移植中的个性化排斥风险评估
基本信息
- 批准号:10284138
- 负责人:
- 金额:$ 16.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsAllograftingArchivesAreaAssessment toolBiopsyCaringClinicalClinical DataClinical InformaticsCollectionComplexComputer AnalysisComputer Vision SystemsComputing MethodologiesDataData StoreDiagnosisDiagnosticDiagnostic ProcedureDiseaseDonor personElectronic Health RecordEventExposure toFundingFutureHeartHeart TransplantationHeart-Lung TransplantationHematoxylin and Eosin Staining MethodHistologicHistologyImage AnalysisImmuneImmunodiagnosticsImmunofluorescence ImmunologicImmunologicsImmunologyImmunosuppressionIn SituIndividualInflammatory InfiltrateInformaticsInjuryInternationalInvestigationKnowledgeLaboratoriesLegal patentLongevityMachine LearningMentorsModelingMolecularMorphologyMyocardialNatureOpportunistic InfectionsOrgan TransplantationPathologyPatientsPerformancePharmaceutical PreparationsPharmacologyPredictive ValuePreventionPrevention ProtocolsPrevention strategyProceduresProcessProtocols documentationPublishingResearchResearch PersonnelResourcesRetrospective cohortRiskRisk AssessmentScheduleSlideSocietiesSolidSpatial DistributionStainsStandardizationSystemTherapeutic immunosuppressionTimeTissue SampleTissuesTranslational ResearchTransplant RecipientsTransplantationWeaningWorkadvanced analyticsallograft rejectionanalysis pipelineanalytical methodanalytical toolarchive dataarchived databasecareer developmentcohortdata modelingdata resourcedata streamsdesignexperiencefeature extractionheart allografthigh riskhistological specimensimprovedinnovationmachine learning algorithmmachine learning methodmeetingsmolecular modelingmultimodalitymyocardial injurynovelpersonalized diagnosticspost-transplantpredictive modelingprematurepreventprognosticprospectivequantitative imagingrisk predictionrisk prediction modelrisk stratificationstandard of caresurveillance strategytissue archivetooltranslational impacttransplant centerstransplantation medicinetreatment as usual
项目摘要
Project Summary: Cardiac allograft rejection (CAR) is a serious concern in transplant medicine, representing
the leading threat to short- and long-term allograft survival. As a result, CAR surveillance and prevention is a
primary focus of post-transplant care, with recipients undergoing frequent, scheduled, surveillance endomyocar-
dial biopsy (EMB) for histologic CAR grading along with frequent, scheduled de-escalation of immunosuppres-
sion (IS). The uniformity of this standardized approach to CAR mitigation is the result of an inability to employ
reliable, proactive, and tailored strategies based on individual CAR risk. Consequently, patients at low CAR risk
are exposed to unnecessary EMB procedures and excess IS therapy, while patients at high risk experience
inadequate CAR surveillance and early/inappropriate weaning of IS. This exposes patients to potential harm,
and highlights the clear, unmet need for precision CAR risk-assessment tools. The overarching premise for this
proposal is that contained within the clinical data and EMB tissues already collected as part of usual care at
transplant centers exists the means to provide actionable CAR risk assessments. Extensive immunologic, diag-
nostic, and pharmacologic data are captured in electronic health records (EHR) at transplant centers, while large
collections of EMB histology samples are stored (and often digitized) in pathology archives. This proposal seeks
to utilize advanced machine-learning algorithms and in-situ diagnostic methods to deeply mine these archival
resources for the purpose of validating novel CAR risk-prediction models. In Aim 1, we will leverage our experi-
ence with automated histologic analysis pipelines to develop a ‘morphologic model’ for predicting future CAR
using archived H&E slides. Hematoxylin-and-Eosin (H&E) histology slides are generated from all EMB events
as part of standard-of-care. In published and patented prior efforts, we have extracted quantitative morphologic
features from digitized H&E slides which, when modeled, demonstrate excellent performance for diagnosing
myocardial injury and CAR grades. In Aim 2, we will move beyond standard H&E, leveraging our experience with
quantitative, in-situ immune-profiling of transplant EMBs to develop a ‘morpho-molecular’ model for predicting
future CAR. This aim will expand upon exciting pilot work which showed the CAR risk-stratification potential of
combining quantitative image-analysis with multiplex immunofluorescence. Finally, in Aim 3, we will develop a
‘histo-informatics’ model for predicting CAR by integrating data from Aims 1 & 2 with comprehensive clinical
informatics data extracted from the EHR. Ultimately, as a result of this work, we expect to validate a novel pre-
cision prediction model for use in prospective investigations exploring personalized CAR surveillance and pre-
vention strategies. Beyond the potential translational impact, this research plan will build on the Applicant’s
knowledge of complex cohort design, integrated data modeling, and transplant immunodiagnostics. Along with
planned coursework and a diverse mentoring, advisory, and collaborative team, this proposal provides the opti-
mal vehicle for Dr. Peyster’s maturation into an investigator with proven expertise in multi-modality diagnostics.
项目总结:心脏同种异体移植排斥反应(CAR)是移植医学中的一个严重问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eliot Peyster其他文献
Eliot Peyster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eliot Peyster', 18)}}的其他基金
Personalized Rejection Risk Assessment in Cardiac Transplantation
心脏移植中的个性化排斥风险评估
- 批准号:
10687099 - 财政年份:2021
- 资助金额:
$ 16.69万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.69万 - 项目类别:
Continuing Grant