Leveraging Computer Vision to Augment Suicide Risk Prediction
利用计算机视觉增强自杀风险预测
基本信息
- 批准号:10285809
- 负责人:
- 金额:$ 26.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAccident and Emergency departmentAdolescentAdvertisingAffectAgeAlgorithmsAreaBehaviorCaringCause of DeathCharacteristicsCicatrixClassificationClinicalCommunitiesComputer Vision SystemsComputersDataDetectionDevelopmentDiseaseDocumentationElectronic Health RecordEyeFacebookFoundationsFrequenciesFutureGoalsHospitalized AdolescentHumanImageImage AnalysisInpatientsLearningMachine LearningMeasuresMedicalMedical ImagingMethodsModelingMole the mammalNational Institute of Mental HealthParticipantPatient Self-ReportPatientsPhysiciansPopulation HeterogeneityPreventionProcessPsychiatric therapeutic procedureRecording of previous eventsReportingResearchRiskRisk AssessmentSamplingSecondary toSecureSelf PerceptionSelf-DirectionSelf-Injurious BehaviorSeveritiesSignal TransductionSkinSkin CancerSkin TissueStandardizationSuicideSuicide attemptSuicide preventionSumSurfaceTechniquesTechnologyTissue imagingTissuesTrainingVisualWorkYoutharmartificial neural networkautomated analysisclinical decision supportconvolutional neural networkdeep learningfollow-uphigh riskimprovedindexinginfection riskinnovationinsightnon-suicidal self injurynovelonline communityprospectiverecruitrisk predictionskin damagesuccesssuicidalsuicidal behaviorsuicidal individualsuicidal risksupport toolstool
项目摘要
Abstract
Self-injurious behaviors occur at alarmingly high rates among adolescents, with suicide ranking as the second
leading cause of death among those ages 15-24. A history of prior self-injury, including both nonsuicidal self-
injury and suicidal self-injury (e.g., suicide attempts), has been consistently found to be the strongest predictor
of future suicidal behavior, with evidence suggesting that the more severe such behaviors are, the greater the
risk for future self-injury. Importantly, however, our current means of assessing severity of prior self-injury is
almost entirely reliant on self-report, despite the fact that self-injury frequently leaves tangible physical
markings. Although applications of machine learning in medical image analysis are growing exponentially,
none have attempted to augment suicide risk detection through automated analysis of self-directed tissue
damage. Leveraging computer vision to automatically assess images of tissue damage has the potential to
obviate complete reliance on subjective patient report of self-injury severity characteristics. Thus, the objective
of this proposal is to utilize computer vision techniques to automate the assessment of hypothesized self-injury
visual severity indicators, learn new visual severity indicators, and determine the utility of these visual signals
in predicting prospective suicide attempt risk. Community adolescents ages 16 to 18 years old will be recruited
on Facebook and Instagram if they have currently visible physical marking(s) secondary to self-injury.
Participants will securely upload images of markings secondary to intentional self-injury. A subset of
participants will be followed longitudinally for three months to assess prospective suicide attempts. We will
employ deep convolutional neural networks, a class of artificial neural networks, to develop algorithms to
detect severity indices of self-injury and to examine their accuracy in predicting short-term prospective suicide
risk. We will assess the generalizability of a subset of algorithms by applying them to a separate clinical
sample of psychiatrically hospitalized adolescents ages 16 to 18 years old. This proof-of-concept study will set
the stage to determine the feasibility of pursuing our long-term goal of integrating this technology into
psychiatric care entry-points (e.g., emergency departments, inpatient units) to assess whether this technology
can augment current suicide risk assessment models and in turn, serve as a clinical decision-support tool to
help clinicians assess suicide risk. This research is significant in that it aligns with the NIMH/National Action
Alliance for Suicide Prevention’s Prioritized Research Agenda for Suicide Prevention’s Aspirational Goal 2 of
determining suicide risk in diverse populations and settings using feasible and effective assessment
approaches, and Goal 3 of finding novel ways to assess for imminent suicide risk, given that our target
prediction period is three months.
摘要
自伤行为在青少年中的发生率高得惊人,自杀居第二位
是15-24岁人群的主要死因既往自伤史,包括非自杀性自伤,
伤害和自杀性自伤(例如,自杀企图),一直被发现是最强的预测
有证据表明,这种行为越严重,
未来自我伤害的风险。然而,重要的是,我们目前评估先前自伤严重程度的方法是
几乎完全依赖于自我报告,尽管事实上,自我伤害经常留下有形的身体
标志.尽管机器学习在医学图像分析中的应用呈指数级增长,
没有人试图通过自动分析自我导向组织来增加自杀风险检测
损害利用计算机视觉自动评估组织损伤图像有可能
·完全依赖患者主观报告的自伤严重程度特征。因此,目标
该提案的一个重要目的是利用计算机视觉技术来自动评估假设的自我伤害
视觉严重性指示器,学习新的视觉严重性指示器,并确定这些视觉信号的效用
预测未来自杀企图的风险。将招募16至18岁的社区青少年
在Facebook和Instagram上,如果他们目前有可见的身体标记继发于自伤。
参与者将安全地上传故意自伤造成的标记图像。的子集
参与者将被纵向跟踪三个月,以评估潜在的自杀企图。我们将
采用深度卷积神经网络(一种人工神经网络)来开发算法,
检测自伤的严重程度指数,并检查其预测短期预期自杀的准确性
风险我们将通过将算法应用于单独的临床试验来评估算法子集的可推广性。
年龄在16至18岁的精神病住院青少年样本。这项概念验证研究将为
该阶段确定追求我们将这项技术整合到
精神病护理入口点(例如,急诊科,住院部),以评估这项技术是否
可以增强目前的自杀风险评估模型,反过来,作为临床决策支持工具,
帮助临床医生评估自杀风险。这项研究的重要性在于它与NIMH/国家行动保持一致
自杀预防联盟的优先研究议程自杀预防的理想目标2
使用可行和有效的评估确定不同人群和环境中的自杀风险
方法,以及目标3,即寻找新的方法来评估即将发生的自杀风险,因为我们的目标
预测期为三个月。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taylor A Burke其他文献
Taylor A Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taylor A Burke', 18)}}的其他基金
Multimodal Dynamics of Parent-child Interactions and Suicide Risk
亲子互动和自杀风险的多模态动力学
- 批准号:
10510227 - 财政年份:2022
- 资助金额:
$ 26.55万 - 项目类别:
Multimodal Dynamics of Parent-child Interactions and Suicide Risk
亲子互动和自杀风险的多模态动力学
- 批准号:
10700982 - 财政年份:2022
- 资助金额:
$ 26.55万 - 项目类别:
Passive Assessment of Behavioral Warning Signs for Suicide Risk in Adolescents: An Idiographic Approach
青少年自杀风险行为警告信号的被动评估:一种具体方法
- 批准号:
10366067 - 财政年份:2021
- 资助金额:
$ 26.55万 - 项目类别:
Passive Assessment of Behavioral Warning Signs for Suicide Risk in Adolescents: An Idiographic Approach
青少年自杀风险行为警告信号的被动评估:一种具体方法
- 批准号:
10762701 - 财政年份:2021
- 资助金额:
$ 26.55万 - 项目类别:
Passive Assessment of Behavioral Warning Signs for Suicide Risk in Adolescents: An Idiographic Approach
青少年自杀风险行为警告信号的被动评估:一种具体方法
- 批准号:
10433042 - 财政年份:2021
- 资助金额:
$ 26.55万 - 项目类别:
Passive Assessment of Behavioral Warning Signs for Suicide Risk in Adolescents: An Idiographic Approach
青少年自杀风险行为警告信号的被动评估:一种具体方法
- 批准号:
10614509 - 财政年份:2021
- 资助金额:
$ 26.55万 - 项目类别:
Passive Assessment of Behavioral Warning Signs for Suicide Risk in Adolescents: An Idiographic Approach
青少年自杀风险行为警告信号的被动评估:一种具体方法
- 批准号:
10190131 - 财政年份:2021
- 资助金额:
$ 26.55万 - 项目类别:
Leveraging Computer Vision to Augment Suicide Risk Prediction
利用计算机视觉增强自杀风险预测
- 批准号:
10475690 - 财政年份:2021
- 资助金额:
$ 26.55万 - 项目类别:














{{item.name}}会员




