Deep learning tools for the automated analysis of hematopathology whole slide images and the development of prognostic algorithms for hematopoietic stem cell transplant recipients

用于自动分析血液病理学全幻灯片图像和开发造血干细胞移植受者预后算法的深度学习工具

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT The bone marrow is the primary site of hematopoiesis and its examination is central to the diagnosis and management of patients with hematological diseases. Pathology slides from clinical hematopathology services represent a treasure trove of real-world data on the biology of human bone marrow. However, human examination is time-intensive and limited in its quantitative precision, preventing our ability to perform large- scale studies or identify new morphologic markers of disease. Machine learning and image processing methods can be applied to the analysis of whole-slide images (WSIs), which will lead to improvements in our understanding of the hematological system, as well as our ability to diagnose and manage hematological diseases. The objective of this research is to build deep learning-based tools for the automated classification of bone marrow aspirates and use these tools to study hematopoiesis in hematopoietic stem cell transplant recipients. The central hypothesis is that automated methods can be developed for the classification, characterization, and quantification of cell morphology on human bone marrow aspirates and that these tools can identify morphologic features predictive of outcome after hematopoietic stem cell transplant. The long-term goal is to develop a suite of artificial intelligence tools for the quantitative analysis of hematopathology WSIs that can be used to improve our understanding of hematopoiesis and our management of patients with hematologic diseases through the development of digital hematopathology tools, stains, and biomarkers for research and clinical applications. This approach is innovative because it applies cutting-edge image analysis technology to the quantitative and scalable study of human bone marrow specimens from clinical pathology archives to drive discovery of new biological insights and clinical biomarkers.
项目摘要/摘要 骨髓是造血的主要部位,其检查是诊断的中心。 以及血液病患者的管理。临床血液病理学中的病理切片 服务代表着有关人类骨髓生物学的真实世界数据的宝库。然而,人类 考试是时间密集型的,其定量精度有限,阻碍了我们进行大规模考试的能力- 对疾病进行规模研究或确定新的形态标志。机器学习与图像处理 这些方法可以应用于全幻灯片图像(WSIS)的分析,这将导致我们的 了解血液系统,以及我们诊断和管理血液系统的能力 疾病。 这项研究的目标是建立基于深度学习的工具,用于自动分类 骨髓抽吸并使用这些工具研究造血干细胞移植中的造血学 收件人。中心假设是可以开发用于分类的自动化方法, 人类骨髓抽提物的细胞形态的表征和量化以及这些工具 可以确定预测造血干细胞移植后结果的形态特征。长期的 目标是开发一套用于血液病理学WSIS定量分析的人工智能工具 这可以用来改善我们对造血的理解和我们对患有 通过开发数字血液病理学工具、染色和生物标记物来治疗血液疾病 研究和临床应用。这种方法是创新的,因为它应用了尖端图像分析 从临床病理角度对人骨髓标本进行定量和可扩展研究的技术 推动发现新的生物学见解和临床生物标记物的档案。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel computational methods on electronic health record yields new estimates of transfusion-associated circulatory overload in populations enriched with high-risk patients.
电子健康记录的新颖计算方法可以对富含高危患者的人群中与输血相关的循环超负荷进行新的估计。
  • DOI:
    10.1111/trf.17447
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang,Michelle;Goldgof,GregoryM;Patel,Ayan;Whitaker,Barbee;Belov,Artur;Chan,Brian;Phelps,Evan;Rubin,Benjamin;Anderson,Steven;Butte,AtulJ
  • 通讯作者:
    Butte,AtulJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Mark Goldgof其他文献

Deep Learning for Morphology-Based, Bone Marrow Cell Classification
  • DOI:
    10.1182/blood-2023-172654
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Shenghuan Sun;Jacob Cleave;Linlin Wang;Fabienne Lucas;Laura Brown;Jacob Spector;Leonardo Boiocchi;Jeeyeon Baik;Menglei Zhu;Orly Ardon;Chuanyi M. Lu;Ahmet Dogan;Dmitry Goldgof;Iain Carmichael;Sonam Prakash;Atul Butte;Gregory Mark Goldgof
  • 通讯作者:
    Gregory Mark Goldgof
Peripheral Blood Smear-Based Deep Learning to Predict Cancer-Associated Thrombosis
  • DOI:
    10.1182/blood-2024-202054
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Deepika Dilip;Siddharth Singi;Dylan C. Webb;Cesar Colorado-Jimenez;Rohan Singh;Zhanghan Yin;Sean Paulsen;Lauren McVoy;Maly Fenelus;Mikhail Roshal;Chad Vanderbilt;Jeffrey I. Zwicker;Ahmet Dogan;Gregory Mark Goldgof;Simon Mantha
  • 通讯作者:
    Simon Mantha
Deep Learning-Driven 24-Hour Mortality Risk Assessment through Peripheral Blood Smear Morphology in Hospitalized Cancer Patients
  • DOI:
    10.1182/blood-2024-208716
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Dylan C. Webb;Cesar Colorado-Jimenez;Maly Fenelus;Siddharth Singi;Zhanghan Yin;Sean Paulsen;K. Hasan Bilal;A. Zara Herskovitz;Samuel McCash;Linlin Wang;Mikhail Roshal;Lauren McVoy;Chad Vanderbilt;Ahmet Dogan;Gregory Mark Goldgof
  • 通讯作者:
    Gregory Mark Goldgof

Gregory Mark Goldgof的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了