Small molecule inhibitors of HBx that decrease hepatitis B virus replication
减少乙型肝炎病毒复制的 HBx 小分子抑制剂
基本信息
- 批准号:10284389
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelAntiviral AgentsAntiviral TherapyApoptosisAreaBar CodesBindingBiologicalBiological AssayBiological ProcessCancer EtiologyCategoriesCause of DeathCell Cycle ProgressionCell NucleusCell physiologyChromosomal StabilityChronicChronic Hepatitis BCircular DNACirrhosisClinicalClinical TrialsCollaborationsComputer softwareDNADNA SequenceDNA sequencingDevelopmentDrug KineticsDrug TargetingDrug usageEpitopesFutureGenetic TranscriptionGoalsHBV GenotypeHepatitis BHepatitis B Core AntigenHepatitis B Surface AntigensHepatitis B VirusHepatocyteHumanInfectionInterferon-alphaKnowledgeLeadLibrariesLifeLife Cycle StagesLiver CirrhosisLiver Stem CellLuciferasesMaintenanceMalignant NeoplasmsMalignant neoplasm of liverMeasuresMediatingMedicineMessenger RNAMethodsModelingNatural ImmunityNuclearOrganoidsPathway interactionsPatientsPharmaceutical PreparationsPre-Clinical ModelPrimary carcinoma of the liver cellsProductionProteinsProteolysisRegulationReverse Transcriptase InhibitorsRiskRoleSignal TransductionStructure-Activity RelationshipTechnologyTestingTherapeuticTimeToxic effectViralViral ProteinsVirusVirus DiseasesVirus Replicationanalogbasechronic infectionclinically relevantcollegecostdrug discoverydrug metabolismdrug resistant virusentecavirfirst-in-humangenetic regulatory proteinin vivo evaluationinnovationmulticatalytic endopeptidase complexmultidisciplinarymutantnovelnovel strategiesnovel therapeuticspre-clinicalpreventprotein degradationrecruitside effectsmall moleculesmall molecule inhibitorvirus related cancer
项目摘要
Chronic infection with hepatitis B virus (HBV) is the 7th leading cause of death worldwide and the 5th leading
cause of cancer. The key to HBV chronic infection is the nuclear localized HBV episomal covalently closed
circular DNA (cccDNA) that drives HBV transcription and replication. The risk of HCC is directly related to the
level of replication from the cccDNA. An HBV cure requires eliminating cccDNA, which is not feasible at present.
However, achieving a functional cure, defined as a sustained loss of hepatitis B surface antigen (HBsAg), may
be possible by silencing the cccDNA. The current therapies, treatment with interferon alpha or life-long
maintenance on nucleos(t)ide analogs, have low functional cure rates highlighting the critical need for new HBV
therapeutics. The HBV HBx protein is an excellent candidate for the development of antivirals due to its critical
roles in the virus life cycle – regulation of viral transcription, degradation of viral restriction factors that silence
cccDNA, and interference with many host cellular processes. Despite its central role, HBx has yet to be the
target of antiviral therapy. Our central hypothesis is that targeting HBx will inhibit viral replication, silence
cccDNA, and facilitate an HBV functional cure. Our proposed studies build on several recent advances. First,
we have shown HBx interacts with cellular DDB1 to mediate the degradation of cellular proteins known to silence
cccDNA. Second, we have developed an authentic HBV infection model using human liver stem cell-derived
organoids (HLOs). Finally, we have established a collaboration with the Center for Drug Discovery (CDD) at
Baylor College of Medicine that has developed 50 libraries containing over 5 billion novel DNA-bar coded small
drug-like molecules (DEC-Tec). We now propose a highly innovative project to ultimately identify new HBV
antivirals that target HBx. In Aim 1, purified HBx protein will be screened by affinity selection against the DEC-
Tec libraries. Binders will be identified by DNA sequencing and validated with fresh target protein. Considering
that HBx interacts with over 100 cellular proteins, we expect to identify multiple HBx binders. Structure-activity
relationship (SAR) will be determined using computational software, and the binder's affinity for HBx measured.
Compounds with SAR and high affinity will be pursued. In Aim 2, high affinity HBx binders will be screened for
the ability to inhibit the critical HBx-DDB1 interaction as measured in a split luciferase assay. Compounds that
inhibit HBx-DDB1 will then be tested for the ability to inhibit HBV replication in the HLO replication model and
compared against the known nucleos(t)ide analogue entecavir. Successful HBx binders will serve as leads for
future in vivo evaluation that includes toxicity, drug metabolism, and pharmacokinetics. Other high affinity binders
can be incorporated into proteolysis targeting chimeric molecules (PROTACs) for proteasome-mediated
degradation. Worldwide, over 257 million people are chronically infected with HBV and approximately 1 million
die each year of liver cirrhosis or cancer. The proposed studies hold tremendous potential for the discovery of
novel approaches to treat chronic HBV, prevent HBV-associated cancer, and lead to a functional cure.
肝炎病毒(HBV)的慢性感染是全球死亡的第七个主要原因,也是第五领先
癌症的原因。 HBV慢性感染的关键是核局部HBV共价关闭
驱动HBV转录和复制的圆形DNA(CCDNA)。 HCC的风险与
CCCDNA的复制水平。 HBV治疗需要消除CCCDNA,目前这是不可行的。
但是,实现功能治疗,定义为乙型肝炎表面抗原(HBSAG)的持续丧失,可能
通过沉默CCCDNA可能会有可能。当前的疗法,干扰素α或终身治疗
维持核(T)IDE类似物的维护,功能性较低,强调了对新HBV的关键需求
治疗。 HBV HBX蛋白由于其关键而成为抗病毒药的出色候选
在病毒生命周期中的作用 - 病毒转录的调节,病毒限制因素的降解,该因子剪影因素
CCCDNA,干扰许多宿主细胞过程。尽管它具有核心作用,但HBX尚未
我们的中心假设是靶向HBX将抑制病毒复制,轮廓
CCCDNA,并促进HBV功能固化。我们提出的研究基于最近的几项进展。第一的,
我们已经显示HBX与细胞DDB1相互作用,以介导已知的静音蛋白的降解
CCCDNA。其次,我们使用人肝干细胞来开发了一个正宗的HBV感染模型
器官(HLOS)。最后,我们与药物发现中心(CDD)建立了合作
贝勒医学院已经开发了50个图书馆,其中包含超过50亿小说的DNA-bar编码小型
药物样分子(DEC-TEC)。现在,我们提出了一个高度创新的项目,以最终确定新的HBV
靶向HBX的抗病毒药。在AIM 1中,纯化的HBX蛋白将通过相对于DEC的亲和力选择来筛选
TEC库。粘合剂将通过DNA测序鉴定,并用新鲜靶蛋白验证。考虑
HBX与100多种细胞蛋白相互作用,我们希望鉴定多个HBX粘合剂。结构活性
关系(SAR)将使用计算软件确定,并测量粘合剂对HBX的亲和力。
将追求具有SAR和高亲和力的化合物。在AIM 2中,将筛选高亲和力HBX粘合剂
如在分裂荧光素酶测定中测量的临界HBX-DDB1相互作用的能力。复合
然后,将测试抑制HBX-DDB1的HBX-DDB1,以抑制HLO复制模型中HBV复制的能力和
与已知的核能(T)IDE类似物结构进行了比较。成功的HBX粘合剂将成为
未来的体内评估,包括毒性,药物代谢和药代动力学。其他高亲和力粘合剂
可以将靶向嵌合分子(protac)掺入蛋白酶体介导的
降解。在全球范围内,超过2.57亿人患有HBV,大约有100万人感染
每年肝肝硬化或癌症死亡。拟议的研究具有发现的巨大潜力
治疗慢性HBV,预防HBV相关癌症并导致功能性治疗的新型方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sue Ellen Crawford其他文献
Sue Ellen Crawford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sue Ellen Crawford', 18)}}的其他基金
Dissecting Rotavirus Viroporin and Enterotoxin Calcium Signaling Pathways
剖析轮状病毒病毒孔蛋白和肠毒素钙信号通路
- 批准号:
10372424 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Dissecting Rotavirus Viroporin and Enterotoxin Calcium Signaling Pathways
剖析轮状病毒病毒孔蛋白和肠毒素钙信号通路
- 批准号:
10677701 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Small molecule inhibitors of HBx that decrease hepatitis B virus replication
减少乙型肝炎病毒复制的 HBx 小分子抑制剂
- 批准号:
10451632 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Host Defense Small Molecule Development for COVID-19 Treatment by Targeting Lysosome
通过靶向溶酶体治疗 COVID-19 的宿主防御小分子开发
- 批准号:
10735492 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
GMP manufacturing and IND Filing of IN-002, a potent inhaled muco-trapping antibody therapy for Respiratory Syncytial Virus
IN-002 的 GMP 生产和 IND 备案,这是一种针对呼吸道合胞病毒的有效吸入粘液捕获抗体疗法
- 批准号:
10761398 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Molecularly Engineered Lectins for Intranasal Prophylaxis and Treatment of Coronaviruses
用于鼻内预防和治疗冠状病毒的分子工程凝集素
- 批准号:
10629566 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别: