Small molecule inhibitors of HBx that decrease hepatitis B virus replication
减少乙型肝炎病毒复制的 HBx 小分子抑制剂
基本信息
- 批准号:10284389
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelAntiviral AgentsAntiviral TherapyApoptosisAreaBar CodesBindingBiologicalBiological AssayBiological ProcessCancer EtiologyCategoriesCause of DeathCell Cycle ProgressionCell NucleusCell physiologyChromosomal StabilityChronicChronic Hepatitis BCircular DNACirrhosisClinicalClinical TrialsCollaborationsComputer softwareDNADNA SequenceDNA sequencingDevelopmentDrug KineticsDrug TargetingDrug usageEpitopesFutureGenetic TranscriptionGoalsHBV GenotypeHepatitis BHepatitis B Core AntigenHepatitis B Surface AntigensHepatitis B VirusHepatocyteHumanInfectionInterferon-alphaKnowledgeLeadLibrariesLifeLife Cycle StagesLiver CirrhosisLiver Stem CellLuciferasesMaintenanceMalignant NeoplasmsMalignant neoplasm of liverMeasuresMediatingMedicineMessenger RNAMethodsModelingNatural ImmunityNuclearOrganoidsPathway interactionsPatientsPharmaceutical PreparationsPre-Clinical ModelPrimary carcinoma of the liver cellsProductionProteinsProteolysisRegulationReverse Transcriptase InhibitorsRiskRoleSignal TransductionStructure-Activity RelationshipTechnologyTestingTherapeuticTimeToxic effectViralViral ProteinsVirusVirus DiseasesVirus Replicationanalogbasechronic infectionclinically relevantcollegecostdrug discoverydrug metabolismdrug resistant virusentecavirfirst-in-humangenetic regulatory proteinin vivo evaluationinnovationmulticatalytic endopeptidase complexmultidisciplinarymutantnovelnovel strategiesnovel therapeuticspre-clinicalpreventprotein degradationrecruitside effectsmall moleculesmall molecule inhibitorvirus related cancer
项目摘要
Chronic infection with hepatitis B virus (HBV) is the 7th leading cause of death worldwide and the 5th leading
cause of cancer. The key to HBV chronic infection is the nuclear localized HBV episomal covalently closed
circular DNA (cccDNA) that drives HBV transcription and replication. The risk of HCC is directly related to the
level of replication from the cccDNA. An HBV cure requires eliminating cccDNA, which is not feasible at present.
However, achieving a functional cure, defined as a sustained loss of hepatitis B surface antigen (HBsAg), may
be possible by silencing the cccDNA. The current therapies, treatment with interferon alpha or life-long
maintenance on nucleos(t)ide analogs, have low functional cure rates highlighting the critical need for new HBV
therapeutics. The HBV HBx protein is an excellent candidate for the development of antivirals due to its critical
roles in the virus life cycle – regulation of viral transcription, degradation of viral restriction factors that silence
cccDNA, and interference with many host cellular processes. Despite its central role, HBx has yet to be the
target of antiviral therapy. Our central hypothesis is that targeting HBx will inhibit viral replication, silence
cccDNA, and facilitate an HBV functional cure. Our proposed studies build on several recent advances. First,
we have shown HBx interacts with cellular DDB1 to mediate the degradation of cellular proteins known to silence
cccDNA. Second, we have developed an authentic HBV infection model using human liver stem cell-derived
organoids (HLOs). Finally, we have established a collaboration with the Center for Drug Discovery (CDD) at
Baylor College of Medicine that has developed 50 libraries containing over 5 billion novel DNA-bar coded small
drug-like molecules (DEC-Tec). We now propose a highly innovative project to ultimately identify new HBV
antivirals that target HBx. In Aim 1, purified HBx protein will be screened by affinity selection against the DEC-
Tec libraries. Binders will be identified by DNA sequencing and validated with fresh target protein. Considering
that HBx interacts with over 100 cellular proteins, we expect to identify multiple HBx binders. Structure-activity
relationship (SAR) will be determined using computational software, and the binder's affinity for HBx measured.
Compounds with SAR and high affinity will be pursued. In Aim 2, high affinity HBx binders will be screened for
the ability to inhibit the critical HBx-DDB1 interaction as measured in a split luciferase assay. Compounds that
inhibit HBx-DDB1 will then be tested for the ability to inhibit HBV replication in the HLO replication model and
compared against the known nucleos(t)ide analogue entecavir. Successful HBx binders will serve as leads for
future in vivo evaluation that includes toxicity, drug metabolism, and pharmacokinetics. Other high affinity binders
can be incorporated into proteolysis targeting chimeric molecules (PROTACs) for proteasome-mediated
degradation. Worldwide, over 257 million people are chronically infected with HBV and approximately 1 million
die each year of liver cirrhosis or cancer. The proposed studies hold tremendous potential for the discovery of
novel approaches to treat chronic HBV, prevent HBV-associated cancer, and lead to a functional cure.
慢性乙型肝炎病毒(HBV)感染是全球第七大死因,也是第五大死因
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sue Ellen Crawford其他文献
Sue Ellen Crawford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sue Ellen Crawford', 18)}}的其他基金
Dissecting Rotavirus Viroporin and Enterotoxin Calcium Signaling Pathways
剖析轮状病毒病毒孔蛋白和肠毒素钙信号通路
- 批准号:
10372424 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Dissecting Rotavirus Viroporin and Enterotoxin Calcium Signaling Pathways
剖析轮状病毒病毒孔蛋白和肠毒素钙信号通路
- 批准号:
10677701 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Small molecule inhibitors of HBx that decrease hepatitis B virus replication
减少乙型肝炎病毒复制的 HBx 小分子抑制剂
- 批准号:
10451632 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




