Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
基本信息
- 批准号:10287896
- 负责人:
- 金额:$ 39.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAwardCRISPR screenCRISPR/Cas technologyCell LineCellsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexComputer ModelsComputer SimulationDNADiseaseDisease modelEngineeringEnzymesEpigenetic ProcessFundingGenesGeneticGenetic EngineeringGenetic RecombinationGenomeGenome engineeringHumanKnowledgeMedicineMetagenomicsMethodsMiningModalityModelingNational Human Genome Research InstituteNerve DegenerationNeuronsNeurosciencesParentsPhenotypeProteinsRNAResearchResource SharingResourcesScreening procedureSingle Nucleotide PolymorphismTechnologyTestingValidationVariantWorkbasecausal variantcohortdata analysis pipelineexperimental studygenetic variantgenome editinggenome wide association studyhuman diseasehuman stem cellsin vivoinnovationmachine learning algorithmnovelrisk varianttool
项目摘要
Supplement Application Abstract
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
Recent genome-wide association studies on Alzheimer’s Diseases (AD) and related dementias have
provided a rich resource of AD risk genes and variants. While this bounty of information is poised to
transform neurodegeneration research, we need tools to identify and validate their functions. Genome
engineering tools such as CRISPR-Cas9 are valuable for such validation, allowing precise editing of
AD-related genomic variants. However, current genetic engineering approaches are limited in
efficiency, scalability, and have unwanted editing errors that could confound validation experiments.
Moreover, we need tools with robust activities in challenging neuroscience models, beyond editing a
few cell lines. Hence, building on our existing NHGRI-funded work, we will use innovative genome
technologies for studying AD and related dementias, in collaboration with experts at the Stanford
Alzheimer's Disease Research Center (ADRC). Firstly, we will use computational simulation with
experimentation to develop precision tools to edit human risk variants in AD models. We will leverage
and further develop our novel CRISPR enzymes and RNA-to-DNA editing tools that we recently
established based on work from the parent award (JACS. 2019). Secondly, we are developing error-
free gene-editors via mining metagenomic recombination enzymes. These error-free gene-editors are
capable of engineering up to multi-kilobase sequences in human stem cells and neurons (Wang et al.,
under review). We will use this accurate gene-editing methods to engineer large AD risk alleles in
neurodegeneration models, and, working with expert collaborators, demonstrate in vivo editing.
Thirdly, we are developing Turbo-seq, a single-cell perturb-seq platform leveraging machine-learning
algorithms and our multi-target CRISPR screen tool for AD studies (Hughes et al., submitted). We will
apply Turbo-seq to simultaneously engineer single and multiple AD-associated variants in relevant
disease models, with an initial focus on APOE alleles and related protective (or causal) variants. We
will determine the functional consequences when genetically engineering these AD variants compared
with healthy controls, integrating single-cell profiling of RNAs and proteins. Our multi-target, scalable
CRISPR tools will significantly accelerate functional study of neurodegeneration variants when
considering the large number of candidates, existing and from our collaborators’ work with the Stanford
Extreme Phenotypes in AD (StEP AD) cohort, and help identify potential interactions between risk
alleles. Overall, our plan is to build a gene-editing and single-cell toolkit, with an accompanying data-
analysis pipeline for neurodegeneration research, thereby expanding the parent award’s tool-building
and resource-sharing efforts into this new focus with the supplement.
补充应用摘要
朝着CRISPR-CAS9超越强大的多重基因组工程
关于阿尔茨海默氏病(AD)和相关痴呆症的最近全基因组的关联研究
提供了广告风险基因和变体的丰富资源。虽然这种信息被中毒
改变神经变性研究,我们需要识别和验证其功能的工具。基因组
诸如CRISPR-CAS9之类的工程工具对于此类验证很有价值,可以精确编辑
广告相关的基因组变体。但是,当前的基因工程方法有限
效率,可扩展性,并具有可能混淆验证实验的不良编辑错误。
此外,我们还需要在挑战神经科学模型中具有强大活动的工具,而不是编辑
几个细胞系。因此,在我们现有的NHGRI资助的作品的基础上,我们将使用创新的基因组
与斯坦福大学的专家合作,研究广告和相关痴呆症的技术
阿尔茨海默氏病研究中心(ADRC)。首先,我们将使用与
在广告模型中开发精确工具以编辑人类风险变体的实验。我们将利用
并进一步开发了我们最近的新颖CRISPR酶和RNA到DNA编辑工具
根据父母奖(JACS。2019)的工作建立。其次,我们正在开发错误 -
通过采矿宏基因组重组酶进行游离基因编辑。这些无错误的基因编辑器是
能够在人类干细胞和神经元中高达多尔克洛酶序列(Wang等,,
审查)。我们将使用这种准确的基因编辑方法来设计大型AD风险等位基因
神经变性模型,并与专家合作者合作,展示了体内编辑。
第三,我们正在开发Turbo-Seq,这是一个单细胞witturb-seq平台利用机器学习
算法和我们用于广告研究的多目标CRISPR屏幕工具(Hughes等,提交)。我们将
将Turbo-seq应用于相关的单一和多个广告相关的工程
疾病模型,最初侧重于APOE等位基因和相关的受保护(或因果)变体。我们
当基因工程这些AD变体比较时,将确定功能后果
具有健康对照,整合了RNA和蛋白质的单细胞分析。我们的多目标可扩展
当CRISPR工具将显着加速神经退行性变体的功能研究
考虑到大量的候选人,现有以及我们与斯坦福的合作者合作
AD(步骤AD)队列中的极端表型,并有助于确定风险之间的潜在相互作用
等位基因。总体而言,我们的计划是建立一个基因编辑和单细胞工具包,并随附数据 -
神经退行性研究的分析管道,从而扩大了父母奖的工具建设
以及通过补充剂将资源分享的努力集中在这一新焦点中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Cong其他文献
Le Cong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Cong', 18)}}的其他基金
Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening
基于重组工程的无切割基因编辑工具包,用于大规模基因组工程和功能筛选
- 批准号:
10622585 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening
基于重组工程的无切割基因编辑工具包,用于大规模基因组工程和功能筛选
- 批准号:
10184864 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
- 批准号:
10450062 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
- 批准号:
10251146 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
相似海外基金
Characterizing Entorhinal Cortex Circuit Dysfunction in an APOE Mouse Model of Chemotherapy-Induced Cognitive Impairment
化疗引起认知障碍的 APOE 小鼠模型中内嗅皮层回路功能障碍的特征
- 批准号:
10677984 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Neuronal ABCA7 loss of function and Alzheimer’s disease
神经元 ABCA7 功能丧失与阿尔茨海默病
- 批准号:
10629715 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Uncovering the Role of the MS4A Gene Family in Alzheimer's Disease
揭示 MS4A 基因家族在阿尔茨海默病中的作用
- 批准号:
10751885 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别: