Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
基本信息
- 批准号:10287896
- 负责人:
- 金额:$ 39.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAwardCRISPR screenCRISPR/Cas technologyCell LineCellsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexComputer ModelsComputer SimulationDNADiseaseDisease modelEngineeringEnzymesEpigenetic ProcessFundingGenesGeneticGenetic EngineeringGenetic RecombinationGenomeGenome engineeringHumanKnowledgeMedicineMetagenomicsMethodsMiningModalityModelingNational Human Genome Research InstituteNerve DegenerationNeuronsNeurosciencesParentsPhenotypeProteinsRNAResearchResource SharingResourcesScreening procedureSingle Nucleotide PolymorphismTechnologyTestingValidationVariantWorkbasecausal variantcohortdata analysis pipelineexperimental studygenetic variantgenome editinggenome wide association studyhuman diseasehuman stem cellsin vivoinnovationmachine learning algorithmnovelrisk varianttool
项目摘要
Supplement Application Abstract
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
Recent genome-wide association studies on Alzheimer’s Diseases (AD) and related dementias have
provided a rich resource of AD risk genes and variants. While this bounty of information is poised to
transform neurodegeneration research, we need tools to identify and validate their functions. Genome
engineering tools such as CRISPR-Cas9 are valuable for such validation, allowing precise editing of
AD-related genomic variants. However, current genetic engineering approaches are limited in
efficiency, scalability, and have unwanted editing errors that could confound validation experiments.
Moreover, we need tools with robust activities in challenging neuroscience models, beyond editing a
few cell lines. Hence, building on our existing NHGRI-funded work, we will use innovative genome
technologies for studying AD and related dementias, in collaboration with experts at the Stanford
Alzheimer's Disease Research Center (ADRC). Firstly, we will use computational simulation with
experimentation to develop precision tools to edit human risk variants in AD models. We will leverage
and further develop our novel CRISPR enzymes and RNA-to-DNA editing tools that we recently
established based on work from the parent award (JACS. 2019). Secondly, we are developing error-
free gene-editors via mining metagenomic recombination enzymes. These error-free gene-editors are
capable of engineering up to multi-kilobase sequences in human stem cells and neurons (Wang et al.,
under review). We will use this accurate gene-editing methods to engineer large AD risk alleles in
neurodegeneration models, and, working with expert collaborators, demonstrate in vivo editing.
Thirdly, we are developing Turbo-seq, a single-cell perturb-seq platform leveraging machine-learning
algorithms and our multi-target CRISPR screen tool for AD studies (Hughes et al., submitted). We will
apply Turbo-seq to simultaneously engineer single and multiple AD-associated variants in relevant
disease models, with an initial focus on APOE alleles and related protective (or causal) variants. We
will determine the functional consequences when genetically engineering these AD variants compared
with healthy controls, integrating single-cell profiling of RNAs and proteins. Our multi-target, scalable
CRISPR tools will significantly accelerate functional study of neurodegeneration variants when
considering the large number of candidates, existing and from our collaborators’ work with the Stanford
Extreme Phenotypes in AD (StEP AD) cohort, and help identify potential interactions between risk
alleles. Overall, our plan is to build a gene-editing and single-cell toolkit, with an accompanying data-
analysis pipeline for neurodegeneration research, thereby expanding the parent award’s tool-building
and resource-sharing efforts into this new focus with the supplement.
补充应用摘要
走向超越CRISPR-CAS9的强大多重基因组工程
最近关于阿尔茨海默病(AD)和相关痴呆的全基因组关联研究
提供了丰富的AD风险基因和变异体资源。当这笔慷慨的信息准备好
转变神经退行性研究,我们需要工具来识别和验证它们的功能。基因组
CRISPR-CAS9等工程工具对于此类验证很有价值,允许精确编辑
与广告相关的基因组变异。然而,目前的基因工程方法仅限于
效率、可伸缩性,以及可能会混淆验证实验的不必要的编辑错误。
此外,我们需要在挑战神经科学模型方面具有强大活动的工具,而不仅仅是编辑
几乎没有细胞系。因此,在我们现有由NHGRI资助的工作的基础上,我们将使用创新的基因组
与斯坦福大学的专家合作,研究AD和相关痴呆症的技术
阿尔茨海默病研究中心(ADRC)。首先,我们将使用计算模拟
开发精密工具以编辑AD模型中的人类风险变量的实验。我们将利用
并进一步开发我们最近开发的新型CRISPR酶和RNA到DNA的编辑工具
根据父级奖项(JACS.2019年)。其次,我们正在开发错误-
通过挖掘元基因组重组酶来释放基因编辑。这些没有错误的基因编辑程序是
能够在人类干细胞和神经元中设计出高达几千碱基的序列(Wang等人,
正在审查中)。我们将使用这种准确的基因编辑方法来设计大的AD风险等位基因
神经退化模型,并与专家合作者合作,演示了体内编辑。
第三,我们正在开发Turbo-seq,这是一个利用机器学习的单细胞扰动-seq平台
算法和我们用于AD研究的多目标CRISPR筛查工具(Hughes等人,提交)。我们会
应用Turbo-seq同时设计相关的单个和多个AD相关变体
疾病模型,最初的重点是载脂蛋白E等位基因和相关的保护性(或因果)变异。我们
将确定对这些AD变异体进行基因工程时的功能后果
与健康对照,整合RNA和蛋白质的单细胞图谱。我们的多目标、可扩展
CRISPR工具在以下情况下将显著加快神经退行性变变体的功能研究
考虑到大量的候选人,现有的和我们的合作者在斯坦福大学的工作
AD(STEP AD)队列中的极端表型,并帮助识别风险之间的潜在交互作用
等位基因。总体而言,我们的计划是建立一个基因编辑和单细胞工具包,并附带数据-
神经变性研究的分析管道,从而扩大了父母奖的工具建设
和资源共享的努力纳入了这一新的重点与补充。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Cong其他文献
Le Cong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Cong', 18)}}的其他基金
Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening
基于重组工程的无切割基因编辑工具包,用于大规模基因组工程和功能筛选
- 批准号:
10622585 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening
基于重组工程的无切割基因编辑工具包,用于大规模基因组工程和功能筛选
- 批准号:
10184864 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
- 批准号:
10450062 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
- 批准号:
10251146 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别: