Model-based methods for single cell chromatin interactomic data
基于模型的单细胞染色质组间数据方法
基本信息
- 批准号:10293050
- 负责人:
- 金额:$ 48.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalApplications GrantsBiological AssayCISH geneCell LineCell NucleusCellsChromatinChromatin Interaction Analysis by Paired-End Tag SequencingChromatin LoopComplexComputing MethodologiesDataDimensionsDiseaseGene ExpressionGene Expression RegulationGenesGenomeHi-CHybridsIn SituLightMethodologyMethodsModelingPlayRegulatory ElementResearchResolutionRoleSystematic BiasTechnologyTissuesVariantbasecell typechromosome conformation capturedeep learningfallsgenome wide association studygenome-widehuman diseasemammalian genomemultimodalitysingle cell analysissingle cell technologytooltraituser friendly softwareuser-friendly
项目摘要
PROJECT SUMMARY/ABSTRACT
Millions of cis-regulatory elements (CRE) have been identified in mammalian genomes, which harbor
large portion of GWAS variants associated with complex human diseases and traits. Interpreting the regulatory
target genes of CRE and GWAS variants remains challenging, as majority of genes are not merely regulated
by CREs in close one-dimensional (1D) vicinity. Instead, CREs can form DNA loops and regulate the
expression of gene(s) from hundreds of kilobases (Kb) away. Thus, deep understanding of chromatin spatial
organization can shed light on gene regulation and disease mechanisms. During the last decade, chromatin
conformation capture (3C)-derived technologies (e.g., in situ Hi-C, capture Hi-C, ChIA-PET, PLAC-seq and
HiChIP) have been widely used to provide a genome-wide view of chromatin spatial organization. However,
these technologies are usually applied to bulk tissue or purified cell lines, and cannot reveal cell-type-specific
chromatin interactome within complex tissues. Fortunately, harnessing the power of single cell technologies,
single cell Hi-C (scHi-C) and scHi-C-derived multi-modal assays, including single cell Methyl-HiC and single-
nucleus methyl-3C, have been rapidly advanced to study chromatin interactome at single cell resolution,
providing powerful tools to study chromatin spatial organization in complex tissues and disease relevant cell
types. While great strides have been made in scHi-C experimental technologies, computational methods for
analyzing scHi-C data are largely lagging behind. The methodological gaps fall mainly in three aspects: (1)
Current methods are inefficient to enhance resolution from extremely sparse scHi-C data. (2) Few methods
exist for removing systematic biases of scHi-C data within each cell, and adjusting for batch effect across
different cells. (3) No method is available to detect Kb resolution cell-type-specific chromatin interactions from
scHi-C data. To fill in these gaps, I propose major research directions: (1) develop deep learning-based
methods to impute sparse chromatin contacts in each cell, (2) develop non-parametric regression models to
remove systematic biases within each cell, and to adjust batch effects across different cells, (3) develop a
hybrid approach based on both global and local background models to identify cell-type-specific chromatin
interactions, and predict putative target genes of GWAS variants associated with complex human diseases and
traits, and (4) develop stand-alone, user-friendly software packages to analyze single cell chromatin
interactomic data and disseminate results. Completion of the proposed study will provide robust and user
friendly computational methods that allow us to analyze 3D genome organization at single cell resolution and
interpret their regulatory role on gene expression and complex human diseases.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Hu其他文献
Ming Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Hu', 18)}}的其他基金
Model-based methods for single cell chromatin interactomic data
基于模型的单细胞染色质组间数据方法
- 批准号:
10657750 - 财政年份:2021
- 资助金额:
$ 48.06万 - 项目类别: