Emulating Immune Dysregulation by Trisomy 21 in a Multi-Organ-on-a-Chip System

在多器官芯片系统中模拟 21 三体的免疫失调

基本信息

项目摘要

Trisomy 21 (T21) is the molecular cause of Oown syndrome (OS), the most common chromosomal abnormality in humans worldwide. Lung disorders represent an important cause of morbidity and mortality in people with OS. Recurrent respiratory infections are particularly common in these individuals and are often life-threatening. However, despite recent studies reporting immune dysregulation and interferon hyperactivity in individuals with OS, there is a critical gap in our understanding on how extra genetic material from chromosome 21 influences homeostatic immune activity of the lung, and innate immune activation and mobilization of myeloid leukocytes, which are key mediators of acute immune response, to respiratory pathogens. Organs-on-chips are biomimetic, microfluidic, cell culture devices created with microchip manufacturing methods that contain continuously perfused hollow microchannels inhabited by living tissue cells arranged to simulate organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, chemical gradients, mechanical cues, and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional two- dimensional or three-dimensional culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. The overarching goal of this project is to apply microengineering principles of organ-on-chip technology and develop a highly innovative and advanced, physiologically relevant model of organ-organ crosstalk to delineate impact of OS on homeostatic physiology of the lung and emulate clinically observed immune dysregulation due to T21. For this, we will create a microfluidically integrated murine multi-organ system that reproduces bone marrow (BM)-lung axis, using primary cells isolated from wild-type (WT) and Op(16)1/Yey mice (a murine model of OS). In parallel, to enable eventual translation of findings to humans, we will focus part of our efforts in generating human lung airway epithelia, vascular endothelium and hematopoietic stem cells from induced pluripotent stem cells of healthy subjects and individuals with OS to recreate Lung and BM tissue in the integrated multi-organ chip system. We will utilize these murine and stem cell-based platforms to study how T21 affects normal functioning and biological responses of the lung airway epithelium and endothelium. Moreover, we will in real-time analyze inflammation development and innate immune cells mobilization in response to challenge with inhaled airborne influenza virus particles. Our central hypothesis is that this dynamic living microsystem can recapitulate innate immune dysregulation in OS, reveal a pulmonary exaggerated immune response to challenge with inhaled infective agents, and enable discovery of previously unknown pathologies in airway function in the context of a multi-organ physiologically linked system.
三体性第21(T21)是Oown综合征(OS)的分子原因,这是最常见的染色体 全球人类异常。肺部疾病代表了发病率和 患有操作系统的人的死亡率。复发性呼吸道感染在这些中尤其常见 个人,经常威胁生命。但是,尽管最近的研究报告了免疫 OS个体的失调和干扰素多动症,我们 了解21染色体中的额外遗传物质如何影响稳态免疫 肺的活性,先天免疫激活和动员髓样白细胞,这 是急性免疫反应的关键介体,对呼吸道病原体。片上器官是 仿生,微流体,细胞培养设备,由微芯片制造方法创建 包含连续灌注的空心微通道,这些微通道由活的组织细胞居住 模拟器官级生理。通过概括多细胞体系结构,组织组织 这些设备的界面,化学梯度,机械提示和人体的血管灌注 使用常规的两维或 三维培养系统。它们还实现了高分辨率,实时成像和体外 活细胞中活细胞的生化,遗传和代谢活性的分析 和器官环境。该项目的总体目标是应用微工程原则 器官片技术并开发高度创新和高级,生理上相关的 有机器官串扰的模型,以描述OS对肺部稳态生理学的影响 模拟由于T21引起的临床观察到的免疫失调。为此,我们将创建一个 微流体整合的鼠多器官系统,该系统重现骨髓(BM) - 肺轴, 使用从野生型(WT)和OP(16)1/yey小鼠(OS的鼠模型)中分离出的原代细胞。在 平行,为了使发现最终向人类翻译,我们将集中精力的一部分 从 诱导健康受试者和患有OS个体的多能干细胞重现肺和BM 集成多器官芯片系统中的组织。我们将利用这些鼠和干细胞 研究T21如何影响肺气道的正常功能和生物反应的平台 上皮和内皮。此外,我们将在实时分析炎症发展和 先天免疫细胞动员以响应吸入的空气传播流感病毒挑战 颗粒。我们的中心假设是,这个动态的生活微系统可以概括先天 OS中的免疫失调,揭示了肺部夸张的免疫反应,以挑战 吸入感染剂,并在气道功能中发现以前未知的病理 在多器官生理链接系统的背景下。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kambez Hajipouran Benam其他文献

Kambez Hajipouran Benam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kambez Hajipouran Benam', 18)}}的其他基金

A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10468736
  • 财政年份:
    2021
  • 资助金额:
    $ 210.19万
  • 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10237309
  • 财政年份:
    2021
  • 资助金额:
    $ 210.19万
  • 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10378933
  • 财政年份:
    2021
  • 资助金额:
    $ 210.19万
  • 项目类别:
An Advanced Lung Organomimetic to Reproduce Human Airway Pathophysiology
重现人类气道病理生理学的先进肺器官模拟
  • 批准号:
    9766131
  • 财政年份:
    2019
  • 资助金额:
    $ 210.19万
  • 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10019354
  • 财政年份:
    2019
  • 资助金额:
    $ 210.19万
  • 项目类别:

相似国自然基金

去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
  • 批准号:
    81900151
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
  • 批准号:
    81870113
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
  • 批准号:
    81570122
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
  • 批准号:
    81470309
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
  • 批准号:
    31270885
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
  • 批准号:
    10655162
  • 财政年份:
    2023
  • 资助金额:
    $ 210.19万
  • 项目类别:
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
  • 批准号:
    10657968
  • 财政年份:
    2023
  • 资助金额:
    $ 210.19万
  • 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 210.19万
  • 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
  • 批准号:
    10643269
  • 财政年份:
    2023
  • 资助金额:
    $ 210.19万
  • 项目类别:
Mitochondrial Calcium and Neuronal Health
线粒体钙和神经元健康
  • 批准号:
    10638869
  • 财政年份:
    2023
  • 资助金额:
    $ 210.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了