Ultra High-density Optomechanic Neural Interfaces
超高密度光机械神经接口
基本信息
- 批准号:10294080
- 负责人:
- 金额:$ 21.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAnimal ModelAnimalsAreaBrainBrain regionCellsCharacteristicsConsumptionCoupledCustomDevicesDiseaseElectric StimulationElectrodesElementsEpilepsyFunctional disorderFutureGenerationsGoalsHealthHippocampus (Brain)HumanImmune signalingInterventionInvestigationLightMechanicsMembraneMethodsMicrofabricationMonitorMotionMusNeuronsNoiseOnset of illnessOpticsParkinson DiseasePerformanceProcessResolutionSchemeSignal TransductionSliceSurfaceSystemTechniquesTechnologyTestingTimeTransducersTranslatingTravelTungstenawakebasecohesiondensitydesignexperimental studyextracellularin vivoinnovationinstrumentmanufacturabilityneural circuitneural implantneurotransmissionnovelnovel therapeuticsphotonicspreservationrelating to nervous systemresponsescale upsensorsimulationspatiotemporaltool
项目摘要
Project Summary
A multi-scale, mechanistic understanding of neural circuits that includes both local- and whole-brain
interconnections still remains elusive. One of the fundamental challenges is the lack of tools for monitoring, with
high spatiotemporal resolution, the activity of local neuron ensembles simultaneously in different regions of the
brain in awake, freely-behaving animals. This calls for the design of ultrahigh density neural probes capable of
recording from thousands of neurons with high spatiotemporal resolution. While there has been tremendous
progress on the design of conventional passive and active electronic neural probes, these technologies are
reaching scaling limits. We need to break away from the conventional scheme of recording and relaying electrical
neural signals using passive or active electronic neural probes to enable breakthrough improvements in the
number of simultaneous channels that we can record from the brain. Here, we propose a disruptive approach
based on fundamental advancements in optics and microelectromechanical systems (MEMS) to deliver an
innovative opto-mechanical probe that can potentially have more than a couple of thousand simultaneously
active recording electrodes in the same footprint of a conventional passive probe. All of the recorded neural
signals in our design are encoded in the optics domain to leverage the ultrahigh bandwidth of light for
communicating the recorded aggregate neural signals to outside the brain on a single optical waveguide. In this
scheme, each recording channel is encoded onto a single wavelength of light that travels along the same
waveguide. This wavelength domain multiplexing (WDM) method enables a true simultaneous recording of many
channels, unlike the time domain multiplexing (TDM) scheme that is used in active electronic neural probes,
which relies on sequential recording of multiple channels. Therefore, our design enables massive scaling of the
number of simultaneously recorded channels, while enhancing SNR, preserving the bandwidth, and minimizing
adverse effects of active electronic neural probes such as heat generation inside the brain. The core unit cell of
our neural probe is an electromechanical sensor that detects electrical neural signals and converts them to small
mechanical motions of a membrane, which in turn modulates a photonic microresonator. Therefore, the electrical
neural signal is transformed to a mechanical and then an optical signal. The ultra-high quality factor optical
microresonator enhances the detected signals. A single common waveguide coupled to multiple microresonators
carries the optical signals to the backend outside the brain. This novel design enables massive scaling of the
number of recording channels without increasing the size of the neural probe. Moreover, the conversion of
electrical signals to optical signals results in enhanced signal-to-noise ratio (SNR) and also makes the
transmitted signals immune to unwanted electrical interference. After successful demonstration of multiplexed
electro-opto-mechanic neural recording in this project, the results can be extended in future efforts to i) develop
even much higher density neural probes with more than 1000 channels and ii) demonstrate its in vivo application.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maysamreza Chamanzar其他文献
Maysamreza Chamanzar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maysamreza Chamanzar', 18)}}的其他基金
Ultra High-density Optomechanic Neural Interfaces
超高密度光机械神经接口
- 批准号:
10463818 - 财政年份:2021
- 资助金额:
$ 21.06万 - 项目类别:
Smart Dura: A Functional Large-scale, High-Density Optoelectric Dura for Non-Human Primates
智能硬脑膜:用于非人类灵长类动物的功能性大型高密度光电硬脑膜
- 批准号:
10705061 - 财政年份:2020
- 资助金额:
$ 21.06万 - 项目类别:
Smart Dura: A Functional Large-scale, High-Density Optoelectric Dura for Non-Human Primates
智能硬脑膜:用于非人类灵长类动物的功能性大型高密度光电硬脑膜
- 批准号:
10440410 - 财政年份:2020
- 资助金额:
$ 21.06万 - 项目类别:
Smart Dura: A Functional Large-scale, High-Density Optoelectric Dura for Non-Human Primates
智能硬脑膜:用于非人类灵长类动物的功能性大型高密度光电硬脑膜
- 批准号:
10238757 - 财政年份:2020
- 资助金额:
$ 21.06万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




