Detyrosinated microtubules in cardiomyocyte mechanics
心肌细胞力学中的去酪氨酸微管
基本信息
- 批准号:10296019
- 负责人:
- 金额:$ 44.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAgeAnimal ModelAnimalsBindingBiotechnologyBlood CirculationCalciumCardiacCardiac MyocytesCardiologyCardiomyopathiesCellsClinicalClinical TrialsComplementContractsCytoskeletonDiseaseDrug KineticsEFRACEnzymesEquilibriumEvaluationExhibitsFamily FelidaeFelis catusFunctional disorderFutureGenderGeneticGoalsHeartHeart HypertrophyHeart failureHumanHypertrophic CardiomyopathyImpairmentIndustryMechanicsMicrotubulesModalityModelingModificationMotionMusMuscle CellsMyocardialMyocardial tissueMyocardiumNoiseOrgan DonationsPatientsPharmacologyPhenotypePilot ProjectsPopulationPost-Translational Protein ProcessingPrevalenceRecording of previous eventsRelaxationResearchRiskRodentScienceScientistSpecialistSpeedSurgical ModelsTestingTherapeuticTissuesTyrosineWorkbaseclinical translationcohortexperimental studygene therapygenetic approachheart cellheart functionimprovedin vivoinhibitor/antagonistinsightmortalitymouse modelmutantnew therapeutic targetnovelnovel therapeuticsoverexpressionpreservationpressureprogramssmall moleculesmall molecule inhibitortargeted treatmenttherapeutic target
项目摘要
Project Summary
A common and currently intractable feature of heart failure is the stiffening of cardiac tissue that impairs the
heart's ability to relax. The microtubule cytoskeleton contributes to the internal stiffness of heart muscle cells,
and under certain conditions can impede the ability of cardiomyocytes to both contract and relax. Over the first
five years of this R01, we found that cardiomyocyte stiffness is tightly regulated by post-translational
detyrosination of microtubules, and that detyrosinated microtubules are consistently elevated in human heart
failure, concomitant with increased myocardial stiffness. We also found that reducing detyrosinated
microtubules is sufficient to lower stiffness and improve contraction and relaxation in cardiomyocytes and
myocardial tissue from patients with diverse forms of heart failure. We further identified the enzyme
responsible for detyrosination in the heart, and showed that targeting this enzyme is sufficient to robustly
improve relaxation in failing human heart cells. As such, detyrosination forms a promising new therapeutic
target for the treatment of heart failure. The proposed research will test the hypothesis that genetic or small
molecule targeting of the “tyrosination cycle” can stably improve both systolic and diastolic function in different
small and large animal models of heart failure. Studies under three aims will address several components of
this hypothesis. In Aim 1, we will explore whether a gene therapy approach overexpressing the tyrosinating
enzyme (TTL) is sufficient to improve systolic function in a genetic mouse model of heart failure, and to
improve diastolic function in surgical model of heart failure with preserved ejection fraction. Aim 2 experiments
will focus on a different therapeutic modality consisting of novel and highly potent small molecule inhibitors of
the detyrosinating enzyme (VASH). We will evaluate the pharmacokinetics of these novel inhibitors and test
their tolerability and efficacy for reducing detyrosination and improving cardiac function in both rodent and
human cells and tissues. In Aim 3, we will move our exploration to larger animal studies and test whether
targeting detyrosination is sufficient to improve myocyte and myocardial function in cats with hypertrophic
cardiomyopathy and with heart failure with preserved ejection fraction. Our cross-species, multi-scale and
multi-pronged approach will balance our goals of reductionist rigor and integrative relevance that ultimately
furthers clinical translation. Together, this work will determine if targeting detyrosinated microtubules can stably
improve cardiac function in heart failure, and identify therapeutic compounds that may be suitable for
progression into a clinical pipeline.
项目概要
心力衰竭的一个常见且目前难以治疗的特征是心脏组织僵硬,从而损害心脏功能。
心脏放松的能力。微管细胞骨架有助于心肌细胞的内部硬度,
在某些条件下会阻碍心肌细胞收缩和舒张的能力。超过第一
在 R01 的五年中,我们发现心肌细胞硬度受到翻译后严格调节
微管的去酪氨酸化,并且去酪氨酸化的微管在人类心脏中持续升高
衰竭,伴随心肌僵硬度增加。我们还发现,减少去酪氨酸
微管足以降低心肌细胞的硬度并改善收缩和松弛
来自不同形式的心力衰竭患者的心肌组织。我们进一步鉴定了该酶
负责心脏中的去酪氨酸作用,并表明针对这种酶足以强有力地
改善衰竭的人类心脏细胞的放松。因此,去酪氨酸形成了一种有前途的新治疗方法
治疗心力衰竭的目标。拟议的研究将检验以下假设:遗传或小
“酪氨酸循环”的分子靶向可以稳定改善不同疾病的收缩和舒张功能
心力衰竭的小型和大型动物模型。三个目标下的研究将涉及以下几个组成部分:
这个假设。在目标 1 中,我们将探讨基因治疗方法是否过度表达酪氨酸化
酶(TTL)足以改善遗传性心力衰竭小鼠模型的收缩功能,并
改善射血分数保留的心力衰竭手术模型的舒张功能。目标2实验
将专注于由新型高效小分子抑制剂组成的不同治疗方式
去酪氨酸酶(VASH)。我们将评估这些新型抑制剂的药代动力学并进行测试
它们在啮齿类动物和动物中减少去酪氨酸化和改善心脏功能的耐受性和功效
人体细胞和组织。在目标 3 中,我们将把探索转向更大规模的动物研究,并测试是否
靶向去酪氨酸足以改善肥厚猫的肌细胞和心肌功能
心肌病和射血分数保留的心力衰竭。我们的跨物种、多尺度和
多管齐下的方法将平衡我们的还原严谨性和综合相关性的目标,最终
进一步临床转化。总之,这项工作将确定靶向去酪氨酸微管是否可以稳定地
改善心力衰竭的心脏功能,并确定可能适合的治疗化合物
进入临床管道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Lears Prosser其他文献
Benjamin Lears Prosser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Lears Prosser', 18)}}的其他基金
MicroRNA site-blocking oligonucleotides as a novel therapy for neurodevelopmental disorders
MicroRNA 位点阻断寡核苷酸作为神经发育障碍的新型疗法
- 批准号:
10302244 - 财政年份:2021
- 资助金额:
$ 44.11万 - 项目类别:
Detyrosinated microtubules in cardiomyocyte mechanics
心肌细胞力学中的去酪氨酸微管
- 批准号:
10678948 - 财政年份:2016
- 资助金额:
$ 44.11万 - 项目类别:
Detyrosinated microtubules in cardiomyocyte mechanics
心肌细胞力学中的去酪氨酸微管
- 批准号:
10469698 - 财政年份:2016
- 资助金额:
$ 44.11万 - 项目类别:
Detyrosinated microtubules in cardiomyocyte mechanics
心肌细胞力学中的去酪氨酸微管
- 批准号:
9157065 - 财政年份:2016
- 资助金额:
$ 44.11万 - 项目类别:
Detyrosinated microtubules in cardiomyocyte mechanics
心肌细胞力学中的去酪氨酸微管
- 批准号:
9279248 - 财政年份:2016
- 资助金额:
$ 44.11万 - 项目类别:
Detyrosinated microtubules in cardiomyocyte mechanics
心肌细胞力学中的去酪氨酸微管
- 批准号:
9914295 - 财政年份:2016
- 资助金额:
$ 44.11万 - 项目类别:
Stretch-dependent X-ROS signaling: implications for cardiomyopathy
拉伸依赖性 X-ROS 信号传导:对心肌病的影响
- 批准号:
8803862 - 财政年份:2014
- 资助金额:
$ 44.11万 - 项目类别:
Stretch-dependent X-ROS signaling: implications for cardiomyopathy
拉伸依赖性 X-ROS 信号传导:对心肌病的影响
- 批准号:
8849495 - 财政年份:2014
- 资助金额:
$ 44.11万 - 项目类别:
Stretch-dependent X-ROS signaling: implications for cardiomyopathy
拉伸依赖性 X-ROS 信号传导:对心肌病的影响
- 批准号:
8354544 - 财政年份:2012
- 资助金额:
$ 44.11万 - 项目类别:
Stretch-dependent X-ROS signaling: implications for cardiomyopathy
拉伸依赖性 X-ROS 信号传导:对心肌病的影响
- 批准号:
8532974 - 财政年份:2012
- 资助金额:
$ 44.11万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 44.11万 - 项目类别:
Continuing Grant