Radiomics signatures and patient outcomes in intracerebral hemorrhage

脑出血的放射组学特征和患者结果

基本信息

  • 批准号:
    10301527
  • 负责人:
  • 金额:
    $ 19.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT The following K23 proposal is for Dr. Sam Payabvash, a Neuroradiologist and Assistant Professor of Radiology at Yale University. Dr. Payabvash is a physician-scientist with specialized expertise at the intersection of neuroscience, neuroimaging, and computer vision. His career goal is to find new treatment targets and to provide personalized care for patients with cerebrovascular disease. Intracerebral hemorrhage (ICH) is one of the most devastating cerebrovascular diseases with no effective treatment. To date, imaging markers of ICH risk- stratification and outcome prediction have been subjective and descriptive in nature, leaving a large gap for automated assessment of imaging feautres embedded in medical images. Preliminary results by Dr. Payabvash have demonstrated the feasibility of a research plan to apply automated feature extraction pipelines and machine learning algorithms to harness the information in medical images for early risk-stratification and identification of potential treatment targets in ICH. In this proposal, Dr. Payabvash will use detailed clinical and imaging data of 3,991 patients from NIH-funded clinical trials, online archives, and institutional registries at Yale, Tufts, and University College of London. He will apply machine-learning algorithms to identify those imaging features of brain hemorrhage on baseline head CT scan that are related to symptom severity at presentation (aim 1). Then, he will use imaging features of hemorrhage to identify those patients who are at risk for early expansion of hematoma (aim 2a), or surrounding edema (aim 2b). These two “modifiable” indicators of poor outcome are considered potential treatment targets in ICH patients. Finally, he will combine admission clinical information and imaging features to build a risk-stratification tool for long-term outcome prediction (aim 3). Under the expert mentorship of Dr. Kevin Sheth (Chief of Neurocritical Care), Dr. Todd Constable (Director of MRI Research), and Dr. Ronald Coifman (Professor of Mathematics), this K23 award will allow Dr. Payabvash to (1) identify and address the most pressing issues in cerebrovascular disease with innovative neurogaming tools; (2) gain expertise in advanced statistical analysis of brain scans; and (3) expand his knowledge in machine learning and computer vision for assessment of medical images. Dr. Payabvash will receive didactic training in neuroimaging statistical analysis, machine learning, deep neural networks, and computer vision. The proposed research and career development plans draw on the wealth of resources available at Yale, including a Regional Coordinating Center for the NIH StrokeNet, the Center for Research Computing; High Performance Computing services, and cutting-edge image processing and analysis infrastructure. At the conclusion of this award period, Dr. Payabvash will be well-positioned to become an independently-funded investigator conducting high-quality research in advanced neuroimaging techniques and analysis aimed at improving the care of patients with cerebrovascular disease.
项目总结/摘要 以下K23建议是为Sam Payabvash博士,神经放射学家和放射学助理教授 在耶鲁大学。Payabvash博士是一位医学科学家,在以下领域拥有专业知识: 神经科学、神经成像和计算机视觉。他的职业目标是寻找新的治疗靶点, 脑血管病患者的个性化护理。脑出血(ICH)是最常见的 严重的脑血管疾病,没有有效的治疗方法。迄今为止,脑出血风险的影像学标志物- 分层和结果预测本质上是主观和描述性的, 自动评估医学图像中嵌入的成像特征。Payabvash博士的初步结果 已经证明了研究计划的可行性,应用自动特征提取管道和机器 学习算法,以利用医学图像中的信息进行早期风险分层和识别, ICH的潜在治疗目标。在这项提案中,Payabvash博士将使用详细的临床和成像数据, 来自NIH资助的临床试验、在线档案和耶鲁大学、塔夫茨大学和 伦敦大学学院。他将应用机器学习算法来识别这些成像特征, 基线头部CT扫描显示脑出血,与就诊时症状严重程度相关(目的1)。然后, 他将使用出血的影像学特征来识别那些有早期扩张风险的患者, 血肿(目的2a)或周围水肿(目的2b)。这两个“可修改”的不良结果指标是 被认为是ICH患者的潜在治疗靶点。最后,他将结合联合收割机入院临床信息, 成像特征,以建立用于长期结果预测的风险分层工具(目标3)。在专家 Kevin Sheth博士(神经重症监护主任)、托德康斯特布尔博士(MRI研究主任)和 博士罗纳德Coifman(数学教授),这个K23奖将允许博士Payabvash(1)确定和 用创新的神经游戏工具解决脑血管疾病中最紧迫的问题;(2)获得 在大脑扫描的高级统计分析方面的专业知识;(3)扩大他在机器学习方面的知识, 用于医学图像评估的计算机视觉。Payabvash博士将接受神经影像学的教学培训 统计分析、机器学习、深度神经网络和计算机视觉。拟议的研究和 职业发展计划利用耶鲁大学丰富的资源,包括区域协调 NIH StrokeNet中心、研究计算中心、高性能计算服务,以及 先进的图像处理和分析基础设施。在这个奖励期结束时,Payabvash博士 将有能力成为一个独立资助的研究人员进行高质量的研究, 先进的神经影像技术和分析,旨在改善脑血管病患者的护理 疾病

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seyedmehdi Payabvash其他文献

Seyedmehdi Payabvash的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seyedmehdi Payabvash', 18)}}的其他基金

Radiomics signatures and patient outcomes in intracerebral hemorrhage
脑出血的放射组学特征和患者结果
  • 批准号:
    10415001
  • 财政年份:
    2021
  • 资助金额:
    $ 19.49万
  • 项目类别:
Radiomics signatures and patient outcomes in intracerebral hemorrhage
脑出血的放射组学特征和患者结果
  • 批准号:
    10624295
  • 财政年份:
    2021
  • 资助金额:
    $ 19.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了