Fibrotic remodeling of lymph nodes disrupts T cell function in fibrosis and cancer
淋巴结纤维化重塑破坏纤维化和癌症中的 T 细胞功能
基本信息
- 批准号:10305424
- 负责人:
- 金额:$ 3.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAntigen-Presenting CellsAntigensAreaAtomic Force MicroscopyBiochemicalBiologyBiomedical EngineeringBiophysicsCancer BiologyCancer EtiologyCancer PatientCancer Research ProjectCell SurvivalCell physiologyCell surfaceCellsCellular biologyCessation of lifeChronicCicatrixClinicalCollagenCombined Modality TherapyComplementCuesDepositionDevelopmentDiseaseDisease ProgressionDoctor of PhilosophyEffectivenessEnsureExtracellular MatrixExtracellular Matrix ProteinsFibroblastsFibronectinsFibrosisFunctional disorderFutureGenesGeneticGoalsHealthHomeostasisHumanImageImmuneImmune EvasionImmunologyImmunotherapyIn VitroInfiltrationInjuryIntegrin alphaVbeta3IntegrinsKnowledgeLinkLungLymphocyteMalignant NeoplasmsMalignant neoplasm of lungMeasuresMechanicsMediatingMentorsMethodsMyofibroblastNeoplasm MetastasisOrganOutcomePathogenicityPathologicPathologyPathway interactionsPatientsPharmacologyPhasePhenotypeProcessProductionPrognosisPropertyPulmonary FibrosisResearchResearch Project GrantsReticular CellSeriesSignal TransductionSiteStromal CellsStructureSystemT cell regulationT cell responseT-Cell ActivationT-Cell DevelopmentT-LymphocyteTestingTherapeuticTissuesTrainingTranscription CoactivatorTumor-infiltrating immune cellsWorkadaptive immune responsecancer immunotherapycytokinedraining lymph nodeidiopathic pulmonary fibrosisimmune activationimmunoengineeringinhibitor/antagonistinnovationinterestinterstitiallymph node microenvironmentlymph nodesmechanical forcemechanotransductionmelanomamouse modelpathogenprofessorprogramsresponsescaffoldsenescenceskillstumortumor immunologytumor microenvironmenttumor progressiontumorigenesiswound healing
项目摘要
Project Summary/Abstract
Fibrosis is a hallmark of cancer that promotes proliferation, metastasis, and immune evasion by altering the
tumor stroma which accounts for up to 90% of tumor mass. In fibrosis, pathogenic departure from homeostasis
results in the excessive deposition of extracellular matrix (ECM) by myofibroblasts, creating discrete regions of
non-resolving wound repair. These regions of fibrotic ECM become dominant regulators of cell phenotype,
providing both biochemical (i.e. ECM composition and soluble factors) and biophysical (i.e. mechanical forces
and material properties) cues to promote tumor progression and restrict immune cell infiltration. Soluble factors
within the interstitial space of these fibrotic organs drain into surrounding lymph nodes (LNs) and induce fibrotic
remodeling in the LN, a common sign of poor prognosis in cancer and other fibrotic pathologies. LNs have a
distinct microenvironment known as the conduit system, which traffics antigens and serves as a migratory
scaffold for lymphocytes. In health, its organization facilitates interactions between T cells and antigen presenting
cells to ensure robust immune activation in response to cancer, pathogens, and injury. Fibroblastic reticular cells
(FRCs) construct and ensheath this collagenous network and produce cytokines that promote T cell survival and
homeostasis. Disruption of this ECM network leads to T cell dysregulation and depletion, implicating lymph node
fibrosis in disease progression. The mechanisms of fibrotic initiation in the LN and the effect of LN fibrosis in T
cell function is poorly understood, yet represent an attractive therapeutic opportunity. In other tissues, fibrotic
remodeling mechanically stiffens the microenvironment, initiating integrin-mediated signaling cascades. I
hypothesize that similar mechanisms drive LN fibrosis by FRCs, and seek to explore how remodeling of the LN
microenvironment affects development of T cell responses in fibrosis and cancer.
The first aim of this proposal (F99 phase) evaluates whether integrin signaling drives LN fibrosis by promoting
FRC-to-myofibroblast differentiation. This will be accomplished in part by analyzing LNs from Idiopathic
Pulmonary Fibrosis and melanoma patients with advanced mechanobiological (atomic force microscopy) and
spatial-omic imaging (CODEX) methods to measure stiffness, ECM content, and FRC/T cell phenotypes. The
knowledge and skills learned in Aim 1 are then applied in Aim 2 (K00 phase) to study the impact of fibrosis in
tumor draining LNs on anti-tumor T cell responses in murine models of melanoma.
项目总结/摘要
纤维化是癌症的一个标志,其通过改变肿瘤细胞的免疫原性来促进增殖、转移和免疫逃避。
肿瘤间质占肿瘤质量的90%。在纤维化中,病原体偏离稳态
导致肌成纤维细胞过度沉积细胞外基质(ECM),产生离散区域,
无法修复的伤口纤维化ECM的这些区域成为细胞表型的主要调节因子,
提供生物化学(即ECM组合物和可溶性因子)和生物物理(即机械力
和材料性质)提示促进肿瘤进展和限制免疫细胞浸润。可溶性因子
在这些纤维化器官的间质空间内的淋巴液流入周围的淋巴结(LN)并诱导纤维化
LN中的重塑,这是癌症和其他纤维化病理中预后不良的常见标志。LN有一个
一种独特的微环境,称为管道系统,它运输抗原,并作为迁移
淋巴细胞的支架。在健康中,其组织促进T细胞和抗原呈递之间的相互作用
细胞,以确保强大的免疫激活,以应对癌症,病原体和损伤。成纤维网状细胞
(FRC)构建并包裹这种胶原网络,并产生促进T细胞存活的细胞因子,
体内平衡这种ECM网络的破坏导致T细胞失调和耗竭,涉及淋巴结转移。
纤维化在疾病进展中的作用LN纤维化的发生机制及LN纤维化对T细胞的影响
细胞功能知之甚少,但代表了一个有吸引力的治疗机会。在其他组织中,
重塑机械地硬化微环境,启动整联蛋白介导的信号级联。我
假设类似机制通过FRC驱动LN纤维化,并试图探索LN的重塑如何
微环境影响纤维化和癌症中T细胞应答的发展。
该提案的第一个目的(F99期)评估整合素信号传导是否通过促进LN纤维化来驱动LN纤维化。
FRC向肌成纤维细胞分化。这将部分通过分析来自特发性
肺纤维化和黑色素瘤患者与先进的机械生物学(原子力显微镜)和
空间组学成像(CODEX)方法来测量硬度、ECM含量和FRC/T细胞表型。的
在目标1中学到的知识和技能然后应用于目标2(K 00阶段),以研究纤维化对
肿瘤引流LN对黑色素瘤鼠模型中抗肿瘤T细胞应答的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grace C Bingham其他文献
Grace C Bingham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grace C Bingham', 18)}}的其他基金
Fibrotic remodeling of lymph nodes disrupts T cell function in fibrosis and cancer
淋巴结纤维化重塑破坏纤维化和癌症中的 T 细胞功能
- 批准号:
10470223 - 财政年份:2021
- 资助金额:
$ 3.72万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




