Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis

利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物

基本信息

  • 批准号:
    10308250
  • 负责人:
  • 金额:
    $ 44.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT – PROJECT 3 Endometriosis is a common, estrogen-dependent, inflammatory disorder that causes debilitating chronic pelvic pain including severe dysmenorrhea and dyspareunia, infertility, and a reduced quality of life for 176 million women and teens worldwide. Treatment of endometriosis-associated pain is mainly surgical and/or medical. Surgical removal of disease results in 50% relapse of pain within 2-5 years. Medical treatments, largely unchanged over decades, comprise nonsteroidal anti-inflammatory drugs (NSAIDs) and hormones that lower estrogen levels or oppose its actions, and result in variable symptom relief. The development and availability of large-scale genomic, transcriptomic, and other molecular profiling technologies, in combination with the deployment of the network concept of drug targets and the power of phenotypic screening, provide an unprecedented opportunity to advance rational drug repurposing and data-driven development of drug combinations. The goal of Project 3 is to leverage endometriosis transcriptomics data combined with publicly available drug screening data and apply a computational drug-repurposing pipeline to identify single agent and combination therapies from existing drugs based on expression reversal perturbing molecular networks away from disease-associated cellular dysfunction, and validate select drugs in human endometrial cells in vitro and an animal model of endometriosis pain. In Aim 1, we will use transcriptomic-based computational drug- repurposing to identify potential new single agent and combination therapeutics based on expression reversal leveraging public transcriptomics data. Our hypothesis is that the inverse expression profiles between the drug repositioning candidates and the disease signatures will result in therapeutic predictions. In Aim 2, we will determine the capacity of compounds of interest (COIs) to inhibit inflammatory signaling responses in primary human immune and endometrial cells through the use of an ex vivo high-throughput mass-tag barcoding assay. We hypothesize that the most promising COIs identified in silico (Aim 1) will improve endometriosis symptoms by inhibiting pro-inflammatory signaling responses in endometrial and/or immune cells. Finally, in Aim 3 we will determine the efficacy of compounds of interest to alleviate pain in a preclinical endometriosis model. We hypothesize that the COIs identified for the treatment of endometriosis will alter the endometriotic microenvironment to alleviate pain. We anticipate this study will serve as the basis for studies on newly discovered novel targets and drug-repurposing as well as functional validation in endometrial tissue as well as testing in preclinical models, and if successful, clinical trials for endometriosis-associated pain in women. We hope that this novel approach will change the paradigm of “one size fits all” hormonal treatment for endometriosis-associated pelvic pain and expand therapeutic options to new therapies and established therapies repurposed to improve the lives of millions of affected women and teens and expand the research pipeline in this space.
摘要-项目3

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marina Sirota其他文献

Marina Sirota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marina Sirota', 18)}}的其他基金

Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis
利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物
  • 批准号:
    10458760
  • 财政年份:
    2021
  • 资助金额:
    $ 44.18万
  • 项目类别:
Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis
利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物
  • 批准号:
    10699970
  • 财政年份:
    2021
  • 资助金额:
    $ 44.18万
  • 项目类别:
An Integrative Multi-Omics Approach to Elucidate Sex-Specific Differences in Alzheimers Disease
阐明阿尔茨海默病性别特异性差异的综合多组学方法
  • 批准号:
    10172820
  • 财政年份:
    2018
  • 资助金额:
    $ 44.18万
  • 项目类别:
An Integrative Multi-Omics Approach to Elucidate Sex-Specific Differences in Alzheimers Disease
阐明阿尔茨海默病性别特异性差异的综合多组学方法
  • 批准号:
    10434004
  • 财政年份:
    2018
  • 资助金额:
    $ 44.18万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10469678
  • 财政年份:
    2016
  • 资助金额:
    $ 44.18万
  • 项目类别:
Elucidating the Role of the Genetic and Environmental Determinants of Preterm Birth Using Integrative Computational Approaches
使用综合计算方法阐明早产的遗传和环境决定因素的作用
  • 批准号:
    9324358
  • 财政年份:
    2016
  • 资助金额:
    $ 44.18万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10281474
  • 财政年份:
    2016
  • 资助金额:
    $ 44.18万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10685567
  • 财政年份:
    2016
  • 资助金额:
    $ 44.18万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10007634
  • 财政年份:
    2016
  • 资助金额:
    $ 44.18万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    9768177
  • 财政年份:
  • 资助金额:
    $ 44.18万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了