Engineering probiotic yeast for efficient sulforaphane delivery
工程益生菌酵母可有效输送萝卜硫素
基本信息
- 批准号:10305158
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAnimal ModelBiochemicalBiological AvailabilityBlood CirculationBroccoli - dietaryCauliflowerCell Culture TechniquesClinical TrialsConsumptionDevelopmentDiffuseEngineered ProbioticsEngineeringEnzymesGastrointestinal tract structureGeneticGoalsHealth BenefitHumanIn VitroIsothiocyanatesKale - dietaryLibrariesMalignant NeoplasmsMalignant neoplasm of prostateMethodsMicrobeMissionMyrosinaseNatural ProductsPathway interactionsPeripheralPharmaceutical PreparationsPhasePlantsPreventiveProbioticsProductionPropertyProstate Cancer therapyRegimenResearchRiskSafetySecretinSignal TransductionSmall Business Innovation Research GrantSourceStudy modelsSulforaphaneTestingTherapeuticTissuesUnited States National Institutes of HealthVegetablesYeastscancer preventioncancer therapycruciferous vegetableexperimental studyfood preparationgastrointestinalmicrobiome compositionmouse modelpromotersugar
项目摘要
Project Summary/Abstract
Consumption of cruciferous vegetables such as broccoli, brussels sprouts, and cauliflower has been shown to
reduce the risk of developing multiple forms of cancer. Recent research has suggested that these health
benefits result in part from the biochemical activity of isothiocyanates, a class of natural products found in
these vegetables. Sulflurophane (SFN), one such isothiocyanate produced in abundance by crucifers like
broccoli and kale, has shown especially impressive potential as a chemo-preventative and cancer therapeutic
in in vitro and animal model studies. It has been challenging to rigorously assess the health benefits of SFN in
humans, however. These challenges result from SFN’s inherent instability, as well as the varying effects that
different food preparation methods and personal microbiome compositions have on SFN bioavailability. In this
SBIR, we propose to engineer a probiotic yeast that will biosynthesize SFN from within the human
gastrointestinal-tract. This probiotic yeast will provide a consistent and direct source of SFN that readily
diffuses into the bloodstream, and is not dependent on specific microbiome compositions, food preparation
methods, or drug regimens. Given the impressive body of research detailing the potential for SFN to treat
prostate cancer in cell culture and animal models, we will develop this probiotic for potential use as a prostate
cancer therapeutic. The probiotic microbe we will use as a host for our engineering efforts is the safe, and
genetically tractable probiotic yeast, S. boulardii. The engineered S. boulardii strain we develop will provide a
means to directly assess the health benefits of SFN in prostate cancer therapy, while also providing a
mechanism to efficiently deliver SFN for cancer therapeutic and preventative purposes. Phase I experiments
will develop an S. boulardii strain that secretes a highly active myrosinase enzyme that is able to perform the
terminal step in SFN biosynthesis. To achieve this goal, we will screen libraries of myrosinases, secretin
signals, and yeast promoters to identify the genetic components that most effectively produce SFN under
gastrointestinal conditions. To establish a proof-of-principle and motivate further research, Phase I will seek to
engineer S. boulardii for production of 200umoles SFN per day, as small clinical trials that administered this
quantity have shown encouraging results. In Phase II research, we will further engineer S. boulardii such that it
contains the entire SFN biosynthesis pathway and produces SFN from fermentable sugars. Resultant strains
will be tested in prostate cancer mouse models for safety and cancer-preventive properties. This project is
directly in line with the NIH mission, as it will advance our understanding of a promising cancer therapeutic
molecule, while also providing a direct means of delivering this potential therapeutic for cancer therapy and
prevention.
项目总结/摘要
食用十字花科蔬菜,如花椰菜、布鲁塞尔子甘蓝和花椰菜,
降低患多种癌症的风险。最近的研究表明,这些健康
这些益处部分来自异硫氰酸酯的生物化学活性,异硫氰酸酯是一类天然产物,
这些蔬菜。硫氟凡(SFN),一种由十字花科植物(如
西兰花和羽衣甘蓝作为化学预防和癌症治疗的潜力特别令人印象深刻
在体外和动物模型研究中。严格评估SFN的健康益处一直具有挑战性,
然而,人类。这些挑战源于SFN固有的不稳定性,以及
不同的食物制备方法和个人微生物组组成对SFN生物利用度有影响。在这
SBIR,我们建议工程益生菌酵母,将生物合成SFN从人体内
胃肠道这种益生菌酵母将提供一种稳定和直接的SFN来源,
扩散到血液中,并且不依赖于特定的微生物组组成,
方法或药物方案。鉴于令人印象深刻的研究机构详细说明了SFN治疗的潜力
在细胞培养和动物模型中研究前列腺癌,我们将开发这种益生菌作为前列腺的潜在用途
癌症治疗我们将使用的益生菌作为我们工程工作的宿主是安全的,
遗传上易处理的益生菌酵母,S.布拉地。经过改造的S.我们开发的布拉氏菌菌株将提供一种
意味着直接评估SFN在前列腺癌治疗中的健康益处,同时还提供
用于癌症治疗和预防目的的有效递送SFN的机制。I期实验
会发展出一个S。布拉氏菌菌株,分泌一种高活性黑芥子酶,能够执行
SFN生物合成的末端步骤。为了实现这一目标,我们将筛选黑芥子酶、分泌素
信号和酵母启动子,以鉴定最有效地产生SFN的遗传组分。
胃肠道疾病为了建立一个原理证明并推动进一步的研究,第一阶段将寻求
工程师S.布拉氏菌每天生产200 umoles SFN,作为小型临床试验,
数量已经显示出令人鼓舞的结果。在第二阶段的研究中,我们将进一步工程S。布拉地,这样它
包含整个SFN生物合成途径并从可发酵糖产生SFN。所得菌株
将在前列腺癌小鼠模型中测试其安全性和癌症预防特性。这个项目是
直接符合NIH的使命,因为它将促进我们对一种有前途的癌症治疗方法的理解
分子,同时还提供了递送这种用于癌症治疗的潜在治疗剂的直接手段,
预防
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Denby其他文献
Charles Denby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Denby', 18)}}的其他基金
Engineering probiotic yeast for efficient sulforaphane delivery
工程益生菌酵母可有效输送萝卜硫素
- 批准号:
10080522 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists