Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
基本信息
- 批准号:10305935
- 负责人:
- 金额:$ 57.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgingAutophagocytosisAutophagosomeBiogenesisCardiacCardiac MyocytesChIP-seqChronicChronic PhaseConsumptionDevelopmentDiabetes MellitusDifferentiation and GrowthExcisionFunctional disorderFundingGenesGenetic TranscriptionGoalsHeartHeart DiseasesHeart HypertrophyHeart failureHigh Fat DietHomeostasisImpairmentInflammationInterventionIschemiaKnockout MiceKnowledgeLeadMediatingMetabolismMitochondriaMolecularMorphologyMusMyocardial dysfunctionOrganellesPathologicPhasePlayProductionPropertyProteinsQuality ControlRIPK1 geneRoleStressTFE3 geneTestingTranscription CoactivatorUp-Regulationcell typediabetic cardiomyopathydiabetic patientheart cellimprovedin vivolipidomicsloss of functionmitochondrial dysfunctionmouse modelmyocardial injurynovelobese personparkin gene/proteinpreventprogramsprotein complexresponsetranscriptome
项目摘要
Summary
Mitochondria are central intracellular organelles that mediate metabolism and ATP production. In order to
maintain the function of mitochondria during stress, cardiomyocytes (CMs) have multiple layers of quality
control mechanisms mediating mitochondrial fission/fusion, degradation and biogenesis. Mitophagy, a
mitochondria-selective form of autophagy, is a major mechanism of degradation of damaged mitochondria and
protects the heart against heart failure. In general, mitophagy is induced by the same molecular mechanisms
commonly used by general autophagy, including “autophagy-related” (Atg) molecules, and additional
molecules, including Pink1/Parkin. However, increasing lines of evidence suggest that mitophagy is also
induced independently of conventional autophagy. During the past funding cycle, we have shown that an
unconventional form of mitophagy plays a more critical role in protecting the heart during ischemia than the
conventional form of mitophagy. This unconventional form of mitophagy, called alternative mitophagy, utilizes
molecular machinery distinct from that used by conventional mitophagy, namely the Ulk1-Rab9-Rip1-Drp1
protein complex. Currently, the functional significance and the molecular mechanisms of alternative mitophagy
remain poorly understood. Our long-term goal is to demonstrate the functional significance of alternative
mitophagy in the heart during chronic and more pathologically relevant conditions in vivo, elucidate the
underlying molecular mechanisms, and eventually apply our knowledge to treat heart disease by stimulating
alternative mitophagy. Interestingly, although conventional autophagy and mitophagy are activated in response
to high fat diet (HFD) consumption in the mouse model of diabetic cardiomyopathy, their activation is transient
and they protect the heart only during the early phase of HFD consumption. On the other hand, an
unconventional form of mitophagy is activated in a more prolonged manner and appears to play an essential
role in protecting the heart during the chronic phase of HFD consumption. We here hypothesize that
alternative mitophagy is the predominant form of mitophagy in the heart during the chronic phase of
HFD consumption and plays an essential role in protecting the heart against diabetic cardiomyopathy.
Alternative mitophagy is activated through a TFE3-dependent transcriptional program and the direct
association of a large protein complex, containing Drp1 and Drp1 interacting proteins, with
mitochondria. We will test our hypothesis using unique indicators of mitophagy, genetically altered mouse
models, morphological analyses, including immunogold analyses, lipidomics, transcriptome analyses, and
ChIP-sequencing analyses. Our study will demonstrate a novel and targetable mitochondrial quality control
mechanism during the chronic development of diabetic cardiomyopathy. Our study should lead to the
development of novel interventions to maintain the quality of mitochondria in diabetic patients and alleviate
their cardiac complications, including cardiac hypertrophy/dysfunction, lipotoxicity, and inflammation.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junichi Sadoshima其他文献
Junichi Sadoshima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junichi Sadoshima', 18)}}的其他基金
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
10317052 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
10534143 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
9902080 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
10062516 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
- 批准号:
10630824 - 财政年份:2017
- 资助金额:
$ 57.15万 - 项目类别:
Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
- 批准号:
10452680 - 财政年份:2017
- 资助金额:
$ 57.15万 - 项目类别:
Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
- 批准号:
9978602 - 财政年份:2017
- 资助金额:
$ 57.15万 - 项目类别:
REGULATION OF MYOCARDIAL GROWTH AND DEATH BY THE HIPPO PATHWAY
HIPPO 通路对心肌生长和死亡的调节
- 批准号:
8764135 - 财政年份:2013
- 资助金额:
$ 57.15万 - 项目类别: