Embryologic Origins of Aortopathy: Biomechanical Characterization of Aortic Aneurysms in the NOTCH1 Mutant Model
主动脉病的胚胎学起源:NOTCH1 突变模型中主动脉瘤的生物力学特征
基本信息
- 批准号:10314596
- 负责人:
- 金额:$ 7.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT ABSTRACT
Aortic aneurysmal disease is a leading causes of death in the US. Ascending aortic aneurysms (AscAA) are
associated with aortic dissection and rupture causing significant morbidity and mortality due to a lack of
symptoms and limited non-surgical therapies. AscAA are frequently found with congenital heart defects (CHD),
specifically bicuspid aortic valve (BAV) and tetralogy of Fallot (TOF). However, the molecular mechanism of
CHD-associated AscAA is poorly understood and there is growing evidence that the mechanism of aneurysm
formation and progression is heterogeneous. As such, disease progression and risk of developing an acute aortic
event is poorly predicted and subsequent clinical guidelines are inadequate. A better understanding of the aortic
biomechanical properties is needed to bridge this knowledge gap, identify disease-specific indicators to guide
therapy, and produce more effective therapeutics.
Mutations in NOTCH1 have been linked to BAV and TOF and we previously described a novel mouse model in
which Notch1 haploinsufficiency is sufficient to cause AscAA. Our previously published data suggests that
differentiation defects of vascular smooth muscle cell (SMC)-precursors during development contribute to
abnormal SMCs in the Notch1+/- adult aorta predisposing to AscAA and implicating an embryologic origin of
CHD-associate aortopathy. We hypothesize that loss of NOTCH1 signaling leads to an abnormal tissue response
to hemodynamic stress and results in increased wall stiffness. This in turn leads to an increase in wall strain and
risk of aortic dissection. The goal of this project is to further investigate the biomechanical properties of the
proximal aortic wall in CHD-associated AscAA.
We will test our hypothesis by (1) assessing the effects of loss of Notch1 on smooth muscle cell phenotype in
response to injury, (2) assessing the biomechanical properties of the smooth muscle cells within the ascending
aortas of NOTCH1 haploinsufficent mice, and(3) assessing the biomechanical properties within the proximal
ascending aorta of pediatric TOF patients. Successful completion of these aims will help to bridge the current
knowledge gap regarding pathogenesis of CHD-associated AscAA disease, assist in improving clinical
guidelines, and create opportunities for new therapeutic targets.
项目摘要
主动脉瘤疾病是美国的主要死亡原因。升主动脉瘤(AscAA)是
与主动脉夹层和破裂相关,由于缺乏
症状和有限的非手术治疗。AscAA经常与先天性心脏病(CHD)一起发现,
特别是二叶主动脉瓣(BAV)和法洛四联症(TOF)。然而,
CHD相关的AscAA知之甚少,越来越多的证据表明动脉瘤的机制
形成和发展是异质的。因此,疾病进展和发生急性主动脉瘤的风险
事件预测不佳,后续临床指南不充分。更好地了解主动脉
生物力学特性需要弥合这一知识差距,确定疾病特异性指标,以指导
治疗,并产生更有效的治疗方法。
NOTCH 1的突变与BAV和TOF有关,我们先前描述了一种新的小鼠模型,
Notch 1单倍不足足以导致AscAA。我们之前公布的数据表明,
血管平滑肌细胞(SMC)-前体细胞在发育过程中的分化缺陷有助于
Notch 1 +/-成人主动脉中的异常平滑肌细胞易患AscAA,并提示
CHD相关性腰椎病。我们假设NOTCH 1信号的缺失导致异常的组织反应
血液动力学应力,并导致增加的壁刚度。这又导致壁应变的增加,
主动脉夹层的风险。本项目的目标是进一步研究生物力学性能的
CHD相关AscAA的近端主动脉壁。
我们将通过以下方法检验我们的假设:(1)评估Notch 1缺失对平滑肌细胞表型的影响,
对损伤的反应,(2)评估升支内平滑肌细胞的生物力学特性,
NOTCH 1单倍体不足小鼠的骨密度,以及(3)评估近端骨内的生物力学特性。
小儿TOF患者的升主动脉。成功地完成这些目标将有助于弥合目前的差距,
关于CHD相关AscAA疾病发病机制的知识缺口,有助于改善临床
指导方针,并为新的治疗目标创造机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Ackah其他文献
Ruth Ackah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Ackah', 18)}}的其他基金
Embryologic Origins of Aortopathy: Biomechanical Characterization of Aortic Aneurysms in the NOTCH1 Mutant Model
主动脉病的胚胎学起源:NOTCH1 突变模型中主动脉瘤的生物力学特征
- 批准号:
10563119 - 财政年份:2021
- 资助金额:
$ 7.31万 - 项目类别:
相似海外基金
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
The developmental and evolutionary origins of vertebrate fins and limbs.
脊椎动物鳍和四肢的发育和进化起源。
- 批准号:
DP240102156 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Discovery Projects
Origins and implications of cosmic explosions
宇宙爆炸的起源和影响
- 批准号:
DE240100433 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Discovery Early Career Researcher Award
ORIGINS - Organic molecular generation of protocells on iron minerals
起源 - 在铁矿物上有机分子生成原始细胞
- 批准号:
NE/Z000041/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316614 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
NSF PRFB FY23: Linking genotypes, phenotypes, and ecology to elucidate the origins of parasite resistance
NSF PRFB FY23:将基因型、表型和生态学联系起来,阐明寄生虫抗性的起源
- 批准号:
2305974 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Fellowship Award














{{item.name}}会员




