Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
基本信息
- 批准号:10315227
- 负责人:
- 金额:$ 7.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adjuvant ChemotherapyAnthracyclineArtificial IntelligenceBiologicalBiological MarkersBiological Specimen BanksBiologyCancer HistologyCarboplatinCharacteristicsChemotherapy-Oncologic ProcedureChicagoConsumptionDataData SetDatabasesDisciplineDiseaseDisease-Free SurvivalEnsureExposure toFruitGene ExpressionGene Expression ProfileGeneticGoalsHematologyHematoxylin and Eosin Staining MethodHistologicHistologyHistopathologyHormone ReceptorImageImmuno-ChemotherapyImmunotherapyIn complete remissionIncidenceIndividualLeadLearningLinkMalignant NeoplasmsMinorityModelingMolecularMolecular ProfilingMorphologyNeoadjuvant TherapyNeuronsOutcomePathologicPathologistPathologyPatient RightsPatientsPatternPhasePredictive ValueProcessSamplingSelection for TreatmentsSeriesSlideStainsTestingTimeToxic effectTreatment ProtocolsTumor BiologyTumor PathologyTumor-Infiltrating LymphocytesUnderrepresented MinorityUniversitiesVulnerable PopulationsWomananalytical methodanticancer researchautoimmune toxicitybasebreast cancer diagnosiscandidate identificationchemotherapycohortcostdata repositorydeep learningdemographicsdigitaldigital imagingdigital pathologydriver mutationethnic diversityexperiencegenomic biomarkerhomologous recombinationimprovedinterestmalignant breast neoplasmmulti-ethnicmutational statusneglectnew combination therapiesnovelpatient populationpersonalized medicinepoint of careprecision medicinepredicting responsepredictive markerracial diversityreceptorresponseresponse biomarkerstandard caretaxanetooltreatment responsetreatment strategytriple-negative invasive breast carcinomatumor
项目摘要
Project Summary
Although tremendous strides have been made in uncovering the biology of breast cancer, selection of
chemotherapy regimens for early breast cancer is based predominantly on receptor status and stage.
However, numerous other factors are associated with response, including gene expression patterns and tumor
genetics, but these are not uniformly available for patients. Hematoxylin and eosin stained pathology is
routinely obtained for all patients with breast cancer, and contains a wealth of information beyond grade. For
example, the pattern and amount of tumor infiltrating lymphocytes has long been recognized as a predictor of
response to chemotherapy, but quantification is challenging.
Deep learning is an emerging discipline with particular promise in the domain of image recognition,
wherein models can learn from repeated exposure to sample images to recognize any candidate features of
interest. Using deep learning, our group and others have successfully used histology to predict a variety of
tumor specific factors linked with response to treatment, including receptor status, gene expression patterns,
driver mutations, and tumor infiltrating lymphocytes. These features can be accurately detected at point of
care, without the extended turn-around time and expense associated with specialized molecular testing. We
hypothesize that deep learning on histology can identify novel morphologic and spatial features of breast
cancer tumors that in turn can predict response to chemotherapy in early breast cancer. We will take
advantage of a rich institutional cohort of over 600 patients who received neoadjuvant chemotherapy and over
2000 patients with long term survival data to curate a well annotated database suited for deep learning on
digital histology. Our patient cohort also features diverse demographics with inclusion of minority patients often
underrepresented in public datasets, ensuring applicability of our findings to all patients with breast cancer. We
will use this dataset to develop a deep learning histologic biomarker of chemotherapy response in early stage
breast cancer. This deep learning biomarker will be compared to standard markers of response to determine if
deep learning on histology provides independent predictive value, allowing better identification of candidates
for intensification or de-intensification of standard anthracycline and taxane based chemotherapy.
项目摘要
尽管在发现乳腺癌的生物学方面已经取得了巨大的进步,但选择
早期乳腺癌的化疗方案主要基于受体状态和分期。
然而,许多其他因素与反应有关,包括基因表达模式和肿瘤。
遗传学,但这些并不是患者都能获得的。苏木精-伊红染色的病理是
为所有乳腺癌患者例行公事地获取,并包含了丰富的超越等级的信息。为
例如,肿瘤浸润性淋巴细胞的类型和数量长期以来一直被认为是预测
对化疗的反应,但量化是具有挑战性的。
深度学习是在图像识别领域具有特别前景的新兴学科,
其中,模型可以通过反复暴露于样本图像来学习以识别任何候选特征
利息。利用深度学习,我们的团队和其他人成功地使用组织学预测了各种
与治疗反应有关的肿瘤特异性因素,包括受体状态、基因表达模式、
驱动器突变和肿瘤浸润性淋巴细胞。这些特征可以在以下位置准确检测到
护理,无需延长周转时间和与专业分子测试相关的费用。我们
假设深入学习组织学可以识别乳房新的形态和空间特征
癌症肿瘤反过来可以预测早期乳腺癌对化疗的反应。我们会带上
600多名接受新辅助化疗和以上患者的丰富机构队列的优势
2,000名具有长期生存数据的患者,以整理一个注释良好的数据库,适合深入学习
数字组织学。我们的患者队列还具有不同的人口统计特征,通常包括少数族裔患者
在公共数据集中的代表性不足,确保我们的研究结果适用于所有乳腺癌患者。我们
我将利用这个数据集来开发一个深入学习的组织学生物标记物,用于早期的化疗反应
乳腺癌。这种深度学习生物标记物将与标准反应标记物进行比较,以确定是否
组织学方面的深入学习提供了独立的预测价值,使更好地识别候选人
用于强化或去强化标准的以蒽环类和紫杉烷为基础的化疗。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical trials of immunotherapy in triple-negative breast cancer.
- DOI:10.1007/s10549-022-06665-6
- 发表时间:2022-08
- 期刊:
- 影响因子:3.8
- 作者:Howard, Frederick M.;Pearson, Alexander T.;Nanda, Rita
- 通讯作者:Nanda, Rita
Highly accurate response prediction in high-risk early breast cancer patients using a biophysical simulation platform.
- DOI:10.1007/s10549-022-06722-0
- 发表时间:2022-11
- 期刊:
- 影响因子:3.8
- 作者:Howard, Frederick M.;He, Gong;Peterson, Joseph R.;Pfeiffer, J. R.;Earnest, Tyler;Pearson, Alexander T.;Abe, Hiroyuki;Cole, John A.;Nanda, Rita
- 通讯作者:Nanda, Rita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederick Matthew Howard其他文献
Frederick Matthew Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederick Matthew Howard', 18)}}的其他基金
Integrating Clinical, Pathologic, and Immune Features to Predict Breast Cancer Recurrence and Chemotherapy Benefit
整合临床、病理和免疫特征来预测乳腺癌复发和化疗获益
- 批准号:
10723924 - 财政年份:2023
- 资助金额:
$ 7.58万 - 项目类别:
相似国自然基金
牛磺胆酸通过靶向抑制BLM乳酸化修饰调控DNA同源重组修复逆转蒽环类化疗耐药的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒽环类药物通过ZBP1介导的调节性细胞死亡重塑肿瘤微环境提高软组织肉瘤免疫治疗应答的机制研究
- 批准号:82373132
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
炎症因子Pentraxin3通过RanBP9抑制DNA损伤修复从而增强乳腺癌蒽环类药物敏感性的机制研究
- 批准号:82303599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于转运体脂筏的蒽环心肌病高稳定药物筛选方法的建立及理论研究
- 批准号:82304445
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“益气养阴”关联代谢通量的参麦方改善蒽环类化疗药物心脏毒性的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
circFAM13B通过促进STUB1介导的YAP泛素化降解调控乳腺癌蒽环药物耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蒽环霉素类抗肿瘤化合物的生物合成和高效异源表达
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
METTL3介导的m6A甲基化调控FOXO3表达促进AML蒽环类耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于尿酸介导NLRP3通路的菊苣“祛湿除痹”抗蒽环类药物心毒性基础研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
骨髓脂肪组织分泌肽BMATP2克服急性髓系白血病蒽环类药物耐药性的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
The Clinical Relevance of Anthracycline-Related Cardiac Remodeling in Childhood Cancer Survivors
儿童癌症幸存者中蒽环类药物相关心脏重塑的临床意义
- 批准号:
10740728 - 财政年份:2023
- 资助金额:
$ 7.58万 - 项目类别:
Effects of Exercise on Changes in Cardiovascular Biomarkers in Patients with Breast Cancer During Anthracycline-based Chemotherapy
运动对蒽环类化疗期间乳腺癌患者心血管生物标志物变化的影响
- 批准号:
10579380 - 财政年份:2023
- 资助金额:
$ 7.58万 - 项目类别:
Deciphering the mutational basis of anthracycline-induced cardiotoxicity in childhood cancer survivors
破译蒽环类药物引起的儿童癌症幸存者心脏毒性的突变基础
- 批准号:
474425 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Studentship Programs
Dissecting mechanisms of anthracycline-induced cardiotoxicity
剖析蒽环类药物引起的心脏毒性机制
- 批准号:
10683784 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Hemopexin as an Early Biomarker of Anthracycline Cardiac Toxicity
血红素结合蛋白作为蒽环类药物心脏毒性的早期生物标志物
- 批准号:
10593077 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Enhancing antigen presentation in triple negative breast cancers through CD40 agonist, Flt3 ligand, and anthracycline chemotherapy
通过 CD40 激动剂、Flt3 配体和蒽环类化疗增强三阴性乳腺癌的抗原呈递
- 批准号:
10704008 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Mitochondria-Targeted Hydropersulfide Donors to Treat Anthracycline-Induced Cardiotoxicity
线粒体靶向氢过硫化物供体治疗蒽环类药物引起的心脏毒性
- 批准号:
10689759 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Mitochondria-Targeted Hydropersulfide Donors to Treat Anthracycline-Induced Cardiotoxicity
线粒体靶向氢过硫化物供体治疗蒽环类药物引起的心脏毒性
- 批准号:
10798654 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Enhancing antigen presentation in triple negative breast cancers through CD40 agonist, Flt3 ligand, and anthracycline chemotherapy
通过 CD40 激动剂、Flt3 配体和蒽环类化疗增强三阴性乳腺癌的抗原呈递
- 批准号:
10349397 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Deciphering the mutational basis of anthracycline-induced cardiotoxicity in childhood cancer survivors
破译蒽环类药物引起的儿童癌症幸存者心脏毒性的突变基础
- 批准号:
475540 - 财政年份:2022
- 资助金额:
$ 7.58万 - 项目类别:
Studentship Programs