Germline Structural Variant Identification and Functional Determination in Childhood Cancer

儿童癌症的种系结构变异鉴定和功能测定

基本信息

  • 批准号:
    10314873
  • 负责人:
  • 金额:
    $ 4.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Abstract A few germline pathogenic structural variants (SV) have been identified in cancer predisposition syndromes, e.g., MSH2 inversion in Lynch syndrome. The advent of short-read whole-genome sequencing (WGS) has facilitated the detection of SVs. However, a pitfall of this sequencing methodology is the inability to capture all SVs, given the reads do not map well to low complexity regions, and current algorithms used to identify SVs from short-read data have very low sensitivity and very high false-positive rates. One of the objectives of this fellowship is to optimize and implement an SV calling pipeline that utilizes multiple algorithms to increase the sensitivity and specificity of variant identification from germline short-read WGS trios. This pipeline is currently being developed and tested on pediatric cancer patients enrolled in the NIH-funded Baylor Advancing Sequencing into Childhood Cancer Care (BASIC3) exome study, which consists of ethnically and racially diverse pediatric patients with solid (CNS and non-CNS) tumors. This BASIC3 subset includes 63 proband/parent trios who have subsequently undergone germline short-read WGS. Five SV callers are run and then filtered using either a percent reciprocal overlap filter or a proposed Artificial Intelligence-based proximity graph filter to identify de novo and inherited SVs. This cohort has recently been selected for a long-read sequencing pilot, data which serves as the gold standard for SV detection. Comparison of short-read WGS generated SV calls with the long- read data will help determine the sensitivity and specificity of variant calls and further improve the short read pipeline (Aim 1A). Once optimized this short-read WGS SV pipeline will be applied to the Kids First Genetics of Embryonal and Alveolar Rhabdomyosarcoma cohort (n=900), as an independent assessment of the method and also to identify recurrent germline SVs in this cancer which has not yet been well characterized (Aim 1B). The second training and scientific objective is to explore the functional effect of a novel de novo SV identified through the initial analysis. A de novo germline duplication of the Prostaglandin Reductase 2 (PTGR2) enhancer and promoter region was found in a pediatric Posterior Fossa subtype A (PF–A) ependymoma patient. Transcriptome data from the patient’s tumor revealed increased PTGR2 expression. The PTGR2 protein converts 15-keto- prostaglandin E2 to 15-keto-13,14-dihydro-PGE2. Studies in adult malignancies suggest that increased 15-keto- 13,14-dihydro-PGE2 is associated with cancer risk potentially through the STAT3 signaling pathway. Increased STAT3 signaling is reported as a distinct feature of PF-A ependymoma. The identified partial duplication of PTGR2 will be engineered into ependymoma progenitor cells, to functionally assess the effects on STAT3 signaling, cell proliferation, and DNA synthesis. In parallel, further analysis of PTGR2 expression and structural variants will be analyzed in pediatric ependymoma cohorts (Aim 2). Completion of this experimental plan and described training activities under Drs. Plon and Milosavljevic will provide Owen Hirschi highly interdisciplinary training in analysis of genomic data, structural variation, and the downstream effects on pediatric cancer biology.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OWEN Robert HIRSCHI其他文献

OWEN Robert HIRSCHI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OWEN Robert HIRSCHI', 18)}}的其他基金

Germline Structural Variant Identification and Functional Determination in Childhood Cancer
儿童癌症的种系结构变异鉴定和功能测定
  • 批准号:
    10438577
  • 财政年份:
    2021
  • 资助金额:
    $ 4.36万
  • 项目类别:
Germline Structural Variant Identification and Functional Determination in Childhood Cancer
儿童癌症的种系结构变异鉴定和功能测定
  • 批准号:
    10646500
  • 财政年份:
    2021
  • 资助金额:
    $ 4.36万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了