Omega-3 Polyunsaturated Fatty Acids in the Treatment of Diabetic Peripheral Neuropathy: Is the source important?
Omega-3 多不饱和脂肪酸治疗糖尿病周围神经病变:来源重要吗?
基本信息
- 批准号:10313537
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse effectsAffectAfferent NeuronsAlgaeAmputationAnti-Inflammatory AgentsBehavioralBlindnessBlood CirculationBlood VesselsBrainCardiovascular DiseasesCardiovascular systemCaringCholesterolChronicChronic DiseaseClinical TrialsComplexComplications of Diabetes MellitusConsumptionCorneaDiabetes MellitusDietary intakeDiseaseDocosahexaenoic AcidsDoseEicosapentaenoic AcidEnd stage renal failureEquilibriumErythrocytesEstersEtiologyEventFatty AcidsFish OilsFishesFunctional disorderGoalsGreenlandHealth Care CostsHealthcareHeartHeavy MetalsHigh Density LipoproteinsHypertriglyceridemiaIndustrializationInflammatoryInsulin-Dependent Diabetes MellitusInuitsLimb structureMeasuresModelingMolecular TargetMotorNerveNerve RegenerationNon-Insulin-Dependent Diabetes MellitusNumbnessObesityOilsOmega-3 Fatty AcidsOutcomeOverweightPainParesthesiaPathologicPathway interactionsPatientsPeripheral Nervous System DiseasesPharmacologic SubstancePhysiciansPopulationPrediabetes syndromeProductionPropertyQuality of lifeRattusResearchRiskRisk FactorsRodentSeriesSerumSkinSourceStressSumSymptomsTherapeuticType 2 diabeticUlcerUnited StatesVeteransblood glucose regulationcardioprotectiondensitydesigndiabeticdiabetic rateffective therapyefficacious treatmentfallsglycemic controlhuman subjectimprovedin vivoindexingmenhadenmilitary veteranmortality risknerve damagenerve repairpatient populationpreclinical studyrelating to nervous systemrepaired
项目摘要
In 2015, 9.4% of the United States population had diabetes and statistically about 50% of these patients will or
already have developed diabetic peripheral neuropathy (DPN). This problem is even more critical in the
veteran health care population with nearly 25% of veterans having diabetes, primarily type 2. In veterans
diabetes is the leading cause of blindness, end-stage renal disease and non-trauma related amputations. The
only treatment for DPN is glycemic control, which is ineffective in subjects with type 2 diabetes. Thus, there is a
critical need of a treatment for DPN. Our studies have demonstrated that treating diabetic rodents with DPN
with omega-3 polyunsaturated fatty acids (PUFA) derived from menhaden (fish) oil initiates nerve damage
repair and reverses DPN. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the predominate
omega-3 PUFA found in fish oil and are the precursors of E and D series resolvins, respectively, which have
anti-inflammatory and neuroprotective properties. We have shown that these metabolites alone elicit repair of
nerve damage caused by diabetes when administered endogenously in vivo. As we initiate plans to advance
omega-3 PUFA to a clinical trial for DPN there remains several questions to be addressed. One common
problem with the design of many of the previous clinical trials of omega-3 PUFA primarily for treatment of
cardiovascular disease were that they failed to determine the circulating levels of omega-3 PUFA or their
metabolites over the course of the study. For most of these studies it was unknown whether dosing was
sufficient to make a therapeutic change in the omega-3 index, defined as the sum of EPA and DHA as a
percentage of total fatty acids in red blood cells. Another poorly explored question has been what is the best
source or composition of omega-3 PUFAs that will provide the most favorable and safe outcome? This is
highlighted by the recent REDUCE-IT study that found that a 4 g daily dose of icosapent ethyl (ethyl ester of
EPA) to have a statistical benefit on reducing ischemic events in subjects with hypertriglyceridemia. Was the
significant outcome achieved in this study due to icosapent ethyl being a more effective source of omega-3
PUFA or use of a higher dose than many previous studies? We have shown that treating type 2 diabetic rats
with fish oil that achieved an omega-3 PUFA concentration in serum that was obtained in human subjects
treated with 4 g of fish oil per day is an efficacious treatment for DPN. However, is fish oil the best source of
omega-3 PUFA for the treatment of DPN or are the ethyl ester derivatives of EPA and/or DHA more
efficacious? Ethyl esters of EPA (Vascepa®) or the combination of EPA and DHA (Lovaza®) are
pharmaceutical compounds and represent a highly purified and concentrated source of EPA and DHA and void
of the less favorable compounds found in fish oil. Studies have shown that EPA and DHA and their metabolites
have different molecular targets. Since the etiology of DPN is complex having both vascular and neural
pathological pathways it is likely that a combination of EPA and DHA as found in Lovaza® will be needed for
an effective treatment of DPN. Besides these pharmaceutical compounds are there other “healthy” alternatives
to fish oil for the treatment of DPN? Commercially available algae's that primarily produce EPA or DHA may be
another environmental friendly and safe source of omega-3 PUFA. The studies presented in this application
will rigorously address the use of these alternative sources of omega-3 PUFA as a treatment for DPN and
determine if omega-3 PUFA derived from pharmaceutical compounds i.e. ethyl ester derivatives of EPA or
EPA/DHA or from industrial sources such as algae's that solely produce EPA or DHA free of cholesterol may
be a better choice than fish oil. The proposed studies will be conducted in rat models of pre-diabetes and type
2 diabetes and will investigate translational endpoints including assessment of motor coordination and balance
and function and density of sensory neurons to track the efficacy of omega-3 PUFA on peripheral neuropathy
and the results correlated with the omega-3 index and circulating levels of omega-3 PUFA metabolites.
2015年,9.4%的美国人患有糖尿病,据统计,这些患者中约有50%将患有糖尿病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A. Yorek其他文献
Mark A. Yorek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A. Yorek', 18)}}的其他基金
Omega-3 Polyunsaturated Fatty Acids in the Treatment of Diabetic Peripheral Neuropathy: Is the source important?
Omega-3 多不饱和脂肪酸治疗糖尿病周围神经病变:来源重要吗?
- 批准号:
10447652 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Omega-3 Polyunsaturated Fatty Acids in the Treatment of Diabetic Peripheral Neuropathy:Is the source important?
Omega-3 多不饱和脂肪酸治疗糖尿病周围神经病变:来源重要吗?
- 批准号:
10610377 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Effect of exogenous fatty acids on diabetes neural/neurovascular complications
外源性脂肪酸对糖尿病神经/神经血管并发症的影响
- 批准号:
9391186 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Insulin Resistance and Vascular Complications in Obesity and Type 2 Diabetes
肥胖和 2 型糖尿病中的胰岛素抵抗和血管并发症
- 批准号:
8327947 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Insulin Resistance and Vascular Complications in Obesity and Type 2 Diabetes
肥胖和 2 型糖尿病中的胰岛素抵抗和血管并发症
- 批准号:
8457977 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Insulin Resistance and Vascular Complications in Obesity and Type 2 Diabetes
肥胖和 2 型糖尿病中的胰岛素抵抗和血管并发症
- 批准号:
8698322 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Peroxynitrite, protein nitration and advanced diabetic neuropathy
过氧亚硝酸盐、蛋白质硝化和晚期糖尿病神经病变
- 批准号:
8625363 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Peroxynitrite, protein nitration and advanced diabetic neuropathy
过氧亚硝酸盐、蛋白质硝化和晚期糖尿病神经病变
- 批准号:
8664835 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
-- - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




