Mathematical modeling of optimal therapeutic combinations for HIV cure

HIV治愈最佳治疗组合的数学模型

基本信息

项目摘要

PROJECT SUMMARY Antiretroviral therapy (ART) suppresses HIV replication and allows a normal lifespan for infected persons, but daily pill ingestion is required to avoid progression to AIDS and further HIV transmission. Multiple therapeutic strategies are being considered to achieve a functional cure for HIV. However, to date, no single approach has achieved sufficient potency for an HIV functional cure. Therefore, there is increasing agreement that an HIV cure will require a multi-pronged approach. This proposal has the objective to identify optimal and feasible combinations of investigational therapeutic approaches to achieve functional cure of HIV using data-validated mathematical models. Our hypothesis is that data-validated mathematical models can identify specific mechanisms of therapeutic combinations, by linking observed kinetics and potency with various quantifiable outcome measures. Our specific aims will validate this hypothesis by fitting different mathematical models that encapsulate competing possible mechanisms to outcome data from curative interventions currently under study, including levels of different reservoir cellular subset, viral quantities, viral diversity and time to viral rebound. Model selection theory will be used to identify the most parsimonious models that reliably explain experimental results. We will use the most parsimonious model that recapitulated the data from each study to perform in silico experiments. We will list all plausible combinations of therapeutic approaches and model each combination. We will create combinatorial dose-response curves by running simulations for each combination by using the parameterization obtained from the fits and by tuning the parameters for each therapy including dosing, scheduling, and order of treatment. This proposal is significant because testing all possible combinations of approaches is impractical, excessively time consuming and expensive. The inability to rigorously assess all potential approaches is a critical barrier to achieve optimal outcomes. Therefore, our proposal is innovative because we propose a rigorous, quantitative framework in which plausible combinations of available interventions are considered and compared with the potential to identify which combination therapies most likely will achieve a functional cure.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erwing Fabian Cardozo Ojeda其他文献

Cervicovaginal tissue residence imprints a distinct differentiation program upon memory CD8 T cells
宫颈阴道组织驻留给记忆 CD8 T 细胞留下了独特的分化程序印记
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Veronica A. Davé;Erwing Fabian Cardozo Ojeda;F. Mair;J. Erickson;Amanda S. Woodward;A. Soerens;A. Koehne;Julie L. Czartoski;Candice Teague;Nicole B. Potchen;Susanne G. Oberle;D. Zehn;J. Schiffer;Jennifer M. Lund;Martin Prlic
  • 通讯作者:
    Martin Prlic

Erwing Fabian Cardozo Ojeda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erwing Fabian Cardozo Ojeda', 18)}}的其他基金

Mathematical modeling of optimal therapeutic combinations for HIV cure
HIV治愈最佳治疗组合的数学模型
  • 批准号:
    10593449
  • 财政年份:
    2019
  • 资助金额:
    $ 9.55万
  • 项目类别:
Mathematical modeling of optimal therapeutic combinations for HIV cure
HIV治愈最佳治疗组合的数学模型
  • 批准号:
    9927445
  • 财政年份:
    2019
  • 资助金额:
    $ 9.55万
  • 项目类别:

相似海外基金

RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
  • 批准号:
    10219039
  • 财政年份:
    2020
  • 资助金额:
    $ 9.55万
  • 项目类别:
RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
  • 批准号:
    9981476
  • 财政年份:
    2019
  • 资助金额:
    $ 9.55万
  • 项目类别:
IGF::OT::IGF RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
IGF::OT::IGF 针对获得性免疫缺陷综合症分类的研究支持服务
  • 批准号:
    9364184
  • 财政年份:
    2016
  • 资助金额:
    $ 9.55万
  • 项目类别:
Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) in Saskatchewan- Where are we now and what does the future hold?
萨斯喀彻温省的人类免疫缺陷病毒(HIV)和获得性免疫缺陷综合症(艾滋病)——我们现在在哪里以及未来会怎样?
  • 批准号:
    236932
  • 财政年份:
    2011
  • 资助金额:
    $ 9.55万
  • 项目类别:
    Miscellaneous Programs
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
  • 批准号:
    3554155
  • 财政年份:
    1991
  • 资助金额:
    $ 9.55万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME REVIEW
获得性免疫缺陷综合症审查
  • 批准号:
    6766860
  • 财政年份:
    1991
  • 资助金额:
    $ 9.55万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
  • 批准号:
    3554156
  • 财政年份:
    1991
  • 资助金额:
    $ 9.55万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME REVIEW
获得性免疫缺陷综合症审查
  • 批准号:
    6256640
  • 财政年份:
    1991
  • 资助金额:
    $ 9.55万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW
获得性免疫缺陷综合症研究综述
  • 批准号:
    2063342
  • 财政年份:
    1991
  • 资助金额:
    $ 9.55万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME REVIEW
获得性免疫缺陷综合症审查
  • 批准号:
    6091256
  • 财政年份:
    1991
  • 资助金额:
    $ 9.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了