Knowledge Management Center for Illuminating the Druggable Genome
阐明可药物基因组的知识管理中心
基本信息
- 批准号:10314036
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-08 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAwardBiologicalCancer cell lineCellsChIP-seqClassificationCommunicationCommunitiesComplexComputer softwareComputerized Medical RecordDataData CollectionData SetDatabasesDevelopmentDiseaseDockingG-Protein-Coupled ReceptorsGene ExpressionGene ProteinsGene TargetingGenerationsGenesGenomeGenomicsGenotype-Tissue Expression ProjectGoalsGrantGraphHomology ModelingHumanInternetIon ChannelKnock-outKnockout MiceKnowledgeKnowledge ManagementLearningLinkLiteratureMachine LearningMethodsMiningMolecularMusOnline SystemsPaperPathway interactionsPatientsPeer ReviewPharmaceutical PreparationsPhasePhenotypePhosphotransferasesProcessProtein KinaseProteinsPublic DomainsPublicationsPublishingReproducibilityResearch PersonnelResourcesSocial NetworkSupervisionSystemTime trendTissuesTranscriptional RegulationTranslational ResearchUpdateVariantVisitVisualization softwareWorkbasebiobankcell typeclinically relevantcommunity centercomputerized data processingdata integrationdata miningdata resourcedata visualizationdisease phenotypedrug discoverydruggable targethuman diseasehuman tissuein silicoinnovationknock-downlearning strategymachine learning methodnovelonline communityoutreachprogramsprotein expressionrepositoryresponseside effectsmall moleculesuccesstext searchingtooltranscription factorunsupervised learningweb site
项目摘要
SUMMARY
The understudied protein targets that are the focus of the implementation phase of the Illuminating the Druggable
Genome (IDG) project need to be placed in the contexts of gene-sets/pathways, drugs/small-molecules,
diseases/phenotypes, and cells/tissues. By extending our previous methods, we will impute knowledge about
the understudied potential target protein kinases, GPCRs, and ion channels listed in the RFA using machine
learning strategies. To establish this classification system, we will organize data from many omics- and literature-
based resources into attribute tables where genes are the rows and their attributes are the columns. Examples
of such attribute tables include gene or protein expression in cancer cell lines (CCLE) or human tissues (GTEx),
changes in expression in response to drug perturbations or single-gene knockdowns (LINCS), regulation by
transcription factors based on ChIP-seq data (ENCODE), and phenotypes in mice observed when single genes
are knocked out (KOMP). In total, we will process and abstract data from over 100 resources. We will then predict
target functions, target association with pathways, small-molecules/drugs that modulate the activity and
expression of the target, and target relevance to human disease. To further validate such predictions, we will
employ text mining to identify knowledge that corroborates with the data mining predictions, perform molecular
docking of predicted small molecules using homology modeling, and seek associations between variants and
human diseases by mining electronic medical records (EMR) together with genomic profiling of thousands of
patients. In addition, we will develop innovative data visualization tools to allow users to interact with all the
collected data, and develop social networking software to build communities centered around
proteins/genes/targets as well as biological topics including pathways, cell types, drugs/small-molecules, and
diseases. Overall, we will develop an invaluable resource that will accelerate target and drug discovery.
概括
未充分研究的蛋白质靶点是“照亮药物”实施阶段的重点
基因组(IDG)项目需要置于基因集/通路、药物/小分子、
疾病/表型和细胞/组织。通过扩展我们之前的方法,我们将估算关于
使用机器在 RFA 中列出的待研究的潜在靶蛋白激酶、GPCR 和离子通道
学习策略。为了建立这个分类系统,我们将组织来自许多组学和文献的数据
基于资源的属性表,其中基因是行,它们的属性是列。示例
这些属性表包括癌细胞系(CCLE)或人体组织(GTEx)中的基因或蛋白质表达,
响应药物扰动或单基因敲低(LINCS)的表达变化,通过调节
基于 ChIP-seq 数据 (ENCODE) 的转录因子,以及单基因时观察到的小鼠表型
被淘汰(KOMP)。总的来说,我们将从 100 多个资源中处理和提取数据。然后我们将预测
目标功能、与途径的目标关联、调节活性的小分子/药物以及
靶标的表达以及靶标与人类疾病的相关性。为了进一步验证此类预测,我们将
采用文本挖掘来识别与数据挖掘预测相符的知识,执行分子分析
使用同源模型对接预测的小分子,并寻找变体和
通过挖掘电子病历 (EMR) 以及数千个基因组分析来诊断人类疾病
患者。此外,我们将开发创新的数据可视化工具,让用户能够与所有
收集数据,并开发社交网络软件,建立以
蛋白质/基因/靶标以及生物主题,包括途径、细胞类型、药物/小分子和
疾病。总体而言,我们将开发宝贵的资源,以加速靶标和药物的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avi Ma'ayan其他文献
Avi Ma'ayan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avi Ma'ayan', 18)}}的其他基金
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
- 批准号:
10693339 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Proteogenomic translator for cancer biomarker discovery towards precision medicine
用于癌症生物标志物发现和精准医学的蛋白质基因组翻译
- 批准号:
10442088 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
- 批准号:
10527721 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
- 批准号:
10814654 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Proteogenomic translator for cancer biomarker discovery towards precision medicine
用于癌症生物标志物发现和精准医学的蛋白质基因组翻译
- 批准号:
10655588 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
The LINCS DCIC Engagement Plan with the CFDE
LINCS DCIC 与 CFDE 的合作计划
- 批准号:
10837964 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
The LINCS DCIC Engagement Plan with the CFDE
LINCS DCIC 与 CFDE 的合作计划
- 批准号:
10468520 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
The LINCS DCIC Engagement Plan with the CFDE
LINCS DCIC 与 CFDE 的合作计划
- 批准号:
10444350 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
The LINCS DCIC Engagement Plan with the CFDE
LINCS DCIC 与 CFDE 的合作计划
- 批准号:
10682935 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Open Access Block Award 2023 - Marine Biological Association
2023 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Y530116/1 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Research Initiation Award: Environmental Factors Modulation of Structure-Function of Biological Systems
研究启动奖:环境因素对生物系统结构功能的调节
- 批准号:
2200650 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MRC Transition Support Award: Cell biological mechanisms underlying stem cell competition
MRC 过渡支持奖:干细胞竞争的细胞生物学机制
- 批准号:
MR/W029219/1 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Fellowship
Open Access Block Award 2022 - Marine Biological Association
2022 年开放获取块奖 - 海洋生物学协会
- 批准号:
EP/X527415/1 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Canada Partnering Award: Revealing the biological and molecular functions of organelle contacts in mammalian cells
加拿大合作奖:揭示哺乳动物细胞细胞器接触的生物学和分子功能
- 批准号:
BB/V018167/1 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Research Grant
IGF::OT::IGF. QUANTIFICATION OF DRUGS OF ABUSE AND RELATED SUBSTANCES IN BIOLOGICAL SPECIMENS. BASE CONTRACT AWARD POP: MARCH 14, 2019 THROUGH MARCH 13, 2020. N01DA-19-8951.
IGF::OT::IGF。
- 批准号:
10591464 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
IGF::OT::IGF. QUANTIFICATION OF DRUGS OF ABUSE AND RELATED SUBSTANCES IN BIOLOGICAL SPECIMENS. BASE CONTRACT AWARD POP: MARCH 14, 2019 THROUGH MARCH 13, 2020. N01DA-19-8951.
IGF::OT::IGF。
- 批准号:
10044270 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Catalyst Award: Integration of Biotechnology and Cyberinstruction in the Biological Sciences at Fort Valley State University
催化剂奖:福特谷州立大学生物科学领域生物技术与网络教学的整合
- 批准号:
1818695 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant














{{item.name}}会员




