Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation

超声驱动纳米气泡刺激增强肿瘤放射反应

基本信息

  • 批准号:
    10316459
  • 负责人:
  • 金额:
    $ 49.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-11 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Radiation is a mainstay of cancer treatment, yet challenges remain. The long term goal of the proposed research is to transform traditional cancer radiation therapy protocols by including a pre-treatment step involving perturbing the vascular and cellular function of tumors with ultrasound-activated radiosensitizing nanobubbles (NBs). The new paradigm in cancer treatment protocol builds upon a decade of prior work that used commercial microbubbles (MBs) to elicit a radiosensitizing effect. The MB radiosensitization effects are primarily intravascular, with significant endothelial damage incurred. In contrast, in the strategy proposed here, we hypothesize that the NBs will also extravasate into the tumor parenchyma, which will result in significant increases in direct damage to the cancer cells, in addition to the vascular damage. Thus the effect will be both intra- and extra-vascular. The tumors treated in this way will respond better to radiation, lowering the effective radiation dose and decreasing residual surviving tumor. The technique further allows targeting of tumor specific volumes allowing healthy tissues to be spared. We have demonstrated in preliminary studies in vivo that ultrasound-activated NB perturbation of tumors results in a significantly greater enhancement in tumor kill compared to MBs when followed by traditional radiation therapy. This approach could markedly improve existing therapies and reduce the associated side-effects. This is clinically important for prostate cancer treatment where collateral damage and off-target effects are common and lead to years of complications in many patients. Therefore, we propose a set of four specific aims to test, develop, optimize, demonstrate and quantify the efficacy of this novel technique in prostate cancer. Aim 1 will focus on the development of stable, uniformly-sized radiosensitizing NBs. The acoustic and bio-activity of the bubbles will be measured, and baseline biodistribution in tumor bearing mice will be carried out. In Aim 2, the NBs will be tested in combination with radiation in a mouse model of prostate cancer so that treatment parameters can be optimized. In Aim 3, carried out concurrently with Aim 2, we will develop a photoacoustic imaging approach for monitoring early treatment response. This tool will be used to predict therapeutic efficacy and completeness of tumor treatment as soon as 2 hours after the therapy. Finally, in Aim 4, we will test the combination approach in a large (rabbit) orthotopic model of human prostate cancer. We have assembled a multidisciplinary MPI team of investigators with a demonstrated track record of collaborative work in this field. The team includes Dr. Czarnota MD/Ph.D., a physician-scientist and discoverer of the original MB sensitizing approach now in clinical trials, Dr. Michael Kolios Ph.D. is a medical physicist with broad experience in photoacoustic imaging for therapy response and ultrasound physics and Dr. Agata Exner, Ph.D., a biomedical engineer with extensive expertise in formulation and implementation of nanobubbles for imaging and therapy. Members of the team are actively collaborating, have shared publications, grants and projects, and record of technology translation to the clinic. The team will ensure timely completion of the proposed research and rapid translation of the approach to clinical use.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Jan Czarnota其他文献

Gregory Jan Czarnota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Jan Czarnota', 18)}}的其他基金

Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
  • 批准号:
    10686414
  • 财政年份:
    2022
  • 资助金额:
    $ 49.74万
  • 项目类别:
Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
  • 批准号:
    10504175
  • 财政年份:
    2022
  • 资助金额:
    $ 49.74万
  • 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
  • 批准号:
    10468225
  • 财政年份:
    2021
  • 资助金额:
    $ 49.74万
  • 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
  • 批准号:
    10671576
  • 财政年份:
    2021
  • 资助金额:
    $ 49.74万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 49.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了