Single Cell Deconvolution of the Pancreatic Tumor Microenvironment
胰腺肿瘤微环境的单细胞反卷积
基本信息
- 批准号:10318092
- 负责人:
- 金额:$ 3.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-09 至 2024-12-08
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAtlasesBasic ScienceBig DataBiologicalBiologyCancer BiologyCell CommunicationCellsClinicalClinical TrialsCoculture TechniquesCombined Modality TherapyCommunitiesComplexCultured CellsDataData SetDesmoplasticDrug resistanceEarly DiagnosisEcosystemElementsFaceFibroblast Growth FactorFibroblastsFutureGenetic TranscriptionGrowthHeterogeneityHistologyHumanHybridsImmuneImmune EvasionImmune systemImmunohistochemistryImmunosuppressionIn Situ HybridizationIn VitroInsulin-Like Growth Factor IIntuitionLeadLightLogisticsLymphocyteMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMapsMeasurementMeta-AnalysisMicrodissectionMinorMolecular AnalysisMolecular ProfilingMusMyelogenousNatureOncologyOnline SystemsOrganoidsOutcomePancreatic Ductal AdenocarcinomaPathologyPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhenotypePlayPopulationProductionPrognosisProteinsReproducibilityResearchResearch PersonnelResistanceResolutionResourcesRoleSamplingSignal TransductionSolidSourceStromal CellsTGFB1 geneTestingTherapeuticTherapeutic InterventionTimeTissuesTranslational ResearchTumor SubtypeValidationWorkXenograft procedurebioinformatics resourcecancer heterogeneitycancer typecell typeclinical prognosiscloud basedcomputer infrastructuredata explorationdata visualizationexperimental studygenetic signaturehigh dimensionalityimprovedin vivoinsightlaser capture microdissectionmolecular subtypesmultidimensional datamultimodalityneoplasticneoplastic cellnovelpancreatic ductal adenocarcinoma modelpancreatic neoplasmparacrinepatient stratificationpersonalized medicineprecision medicineprognosticsingle cell analysissingle cell sequencingsingle-cell RNA sequencingstandard caretherapeutic targettherapeutically effectivetranscriptome sequencingtranscriptomicstreatment grouptreatment responsetumortumor microenvironmentvirtualwasting
项目摘要
Project Summary/Abstract:
Pancreatic ductal adenocarcinoma (PDAC) maintains its status as one of most lethal solid cancers with
a 5-year survival of 8%. Minor improvements have been attributed to early detection, but the vast majority of
patients face a grim prognosis without effective therapeutic intervention. Molecular analysis of patient samples
has often been confounded by mixed biological samples, leading to reproducibility challenges. Previously, our
lab performed virtual microdissection on bulk RNA-seq patient samples establishing robust prognostic gene
signatures describing an aggressive basal-like and drug-responsive classical tumor subtypes highlighting the
importance of cancer heterogeneity across patients. Using these signatures as patient classifiers has been an
important utility in preliminary clinical trials and therapeutic profiling of patient derived organoids.
Building evidence suggests patient unique TME composition impacts PDAC progression and resistance
to standard treatments. While patient tissue characterization with bulk measurements has provided key insights
into cancer biology, parsing the complex tumor microenvironments requires higher resolution due to the
widespread stromal involvement and sparse neoplastic populations. Single-cell sequencing delivers the
analytical power to help identify variable TME elements between patients that lead to the distinct prognostic and
therapeutic responses. Thus, understanding the extent and role of TME heterogeneity in PDAC across patient
tumor subtypes is paramount to widen the door for personalized medicine in oncology.
In this proposal, I will establish a comprehensive single-cell atlas of human PDAC TME to significantly
lower the barrier between researchers and complex single-cell transcriptomics data to explore novel prognostic
and synergistic therapeutic targets. I will use local and public single cell RNA-seq data of PDAC tissue to
investigate the extent and role of cellular heterogeneity across patient tumor subtypes. Specifically, I will define
molecular signatures and map out the interactome of functional cell types within stromal, lymphocytic, myeloid
populations at unprecedented spatial resolution. Ultimately, by integrating high-dimensional data from single-cell
RNA-seq and Spatial Transcriptomics, this work will shed light on the intricate tissue pathology while laying down
a broad framework for understanding multi-axis cell interactions behind progression and resistance in diverse
cancer types.
项目总结/文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ki Oh其他文献
Ki Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ki Oh', 18)}}的其他基金
Single Cell Deconvolution of the Pancreatic Tumor Microenvironment
胰腺肿瘤微环境的单细胞反卷积
- 批准号:
10539244 - 财政年份:2020
- 资助金额:
$ 3.83万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.83万 - 项目类别:
Continuing Grant














{{item.name}}会员




